Development of a 2D full-wave JE-FDTD Maxwell X-mode code
for reflectometry simulation

F. da Silva,S. Heuraux$T. Ribeiro and'B. Scott

§ Associaéio EURATOM/IST—Instituto de Plasmas e &ois
Instituto Superior €cnico, 1046-001 Lisboa, Portugal

f1JL Nancy-Universi
CNRS UMR 7198, BP 70239, F-54506 Vandceuvre Cedex, France

¥ Max-Planck-Institutiir Plasmaphysik
EURATOM Association, Garching, Germany

Abstract

A 2D full-wave FDTD code is being developed and integrateth\lie output of a state-of-the-art
turbulence code implementing a complete synthetic diaimespable of coping with the complex signa-
ture of turbulence. The turbulence code used is a gyrofleicteimagnetic model with global geometry
(GEMR). The X-mode wave-propagation code solves Maxwelbgigns using a finite-difference time-
domain technique coupled to the ordinary differential eique of the motion or to differential equations
describing the plasma behaviour. The plasma current equegihandled through a novel solver (JE)
that allows a fast direct FDTD implementation which congés an improvement over the much slower
Runge-Kutta solvers, traditionally used.

1 Introduction

An important tool for the progress of reflectometry is nuro@&risimulation, able to assess the measuring
capabilities of existing systems and to predict the perforoe of future ones in machines such as ITER and
DEMO. To simulate X-mode reflectometry in a comprehensive@tplasmas scenarios and experiments, a
two-dimensional (2D) full-wave finite-differences timesdain (FDTD) code is being developed and inte-
grated with the output of a state-of-the-art turbulenceecahplementing a complete synthetic diagnostic
capable of coping with the complex signature of turbulentke turbulence code used is a six moments
gyrofluid electromagnetic model with global geometry (GEMHE], [2]. The X-mode wave-propagation
code solves Maxwell equations using a FDTD technique coufgehe ordinary differential equations of
the motion or to differential equations describing the plasbehaviour. The plasma current equation is
handled through a novel solver (JE) [3] that allows a dird@TB implementation, which constitutes an
improvement over the much slower Runge-Kutta solversittomally used. Such numerical scheme can
be used to develop a 3D code including collision effects. ftan characteristics of the X-mode code
are presented together with a description of its integnatigth the turbulence code. This approach to a
synthetic diagnostic will provide a better understandifighe complexity associated with reflectometry
measurements.

2 REFMULX—The X-mode code

The need to simulate X-mode reflectometry led to the devetoprof a 2D full-wave Maxwell FDTD,
REFMULX. This code complements the available O-mode codeHRUL) drawing upon the experience
gained during REFMUL’s implementation, being an examiie,rewriting of the unidirectional transparent



source (UTS)I4] for X-mode. To better design a synthetigdastic the code has the possibility of include,
as plasma models, the results calculated by external codiek wrovide a more thorough description of the
plasma behaviour than the simpler internal models natWRBBMULX. Internal models can be used when
a simplified description is needed to simulate a certainnpdalsehaviour (e.g. to isolate forward scattering
response without any Bragg backscattering) or to test anthggis in a controlled plasma scenario, while
the external plasma input would spring into action when aenubose to reality scenario is envisaged. In
the code the plasma is considered stationary on wave-tifeeeree €,qsmq > Twav), IONS are considered
motionless (ion cyclotron frequenay.; < wyay) and thermal electron velocity smaller than phase velocity
(v, < vpp). We assume a transversal electric (TE), i.e. X-mode praiiay (wave magnetic fielH || Bo)

in a 2D plane £—y) perpendicular to which a static magnetic field is &) and no gradients are admitted
along this axis§/0z = 0). With this considerations, Maxwell curl equations appasua simpler set of
differential equations
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whereo E, , ando* H are responsible for the implementation of a perfectly meddayer (PML)[[5]. The
plasma is handled by the current density,. This set of PDEs will be solved using FDTD with the classical
Yee algorithm[[6]. More details on its implementation canfdend in [4], [8]. Metallic conditions is set
using a numeric perfectly magnetic conductor conditidn [F$ couple the propagation equations to the
plasma the equation of movement
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must be solved at each time-step, whienepresents the direction along the magnetic field. Thisusilys
the most delicate part when solving this kind of codes simcalgorithm which is stable and efficient must
be found. We resort here to one proposed by Xu and Yuan [3]whilills these requirements. For 2D
without collisions { = 0) solving J is reduced to
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This is quite efficient when compared with Runge-Kutatthf order (RK4), a technique traditionally used
to solve this problem. With this new schema oblgquations3 for H andE and2 for J, have to be solved.
Compare it to RK4 where0 equations are needed fdy and since these use all valuesbfandE at every
half iteration, one has to solve two systems shifted &f, adding to a grand total df6 equations.

Plasma density..(r, ¢) is introduced in the definition of;f) = nee?/eom. and the external magnetic field
By(r,t) throughw,. = eBy/m.. In this work they are given by an external code, GEMR.
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3 GEMR

The density fluctuations are computed by means of a threendiomal electromagnetic gyrofluid model
with global geometry. This model is derived by taking thetfgix moments of the gyrokinetic equation,
namely, densities, parallel velocities, parallel and padicular temperatures and parallel heat fluxes asso-
ciated with each temperature, all for each plasma spéedjearié using a consistent treatment of the energy
conservation[Ji1]. The extra equations necessary to yieldsed system are the ones that rule the fields,
namely, the gyrokinetic polarisation equation for the &testatic potentiall[10], and the Ampere’s law for
the parallel magnetic vector potential, since the modekisteomagnetic. The latter property together with
the fact that not only the fluctuations but also the backgioprofiles are evolved in time implies that a
dynamical Shafranov shift and a correction to the magnetid fiitch are calculated and treated self consis-
tently in the modell[Ii1]. The geometry is global in the serse the radial dependence of the geometrical
guantities is kept (no flux tube approximation made). Therdioates used are field aligned, and hence
non-orthogonal, due to the computational efficiency gaay #llow in magnetised plasmas, where a strong
spatial anisotropy between the direction along the magrfietid, and the plane perpendicular to it exists.
The choice is to have one coordinatg éligned with the magnetic field, and the remainingafdy) per-
pendicular to it, such that only one contravariant compooéthe magnetic field is finite§ - Vs = B%),
with the remaining two vanishindX- Vo = B - Vy = 0) [L2Z]. To avoid confusion it is noteworthy that the
coordinatesr, y are different from their counter parts in REFMULX. Since tfwal is to probe the plasma
electron density with reflectometry on the poloidal plarestgprocessing coordinates transformations from
the field aligned GEMR coordinate systém y, s) to the usual cylindrical coordinate systém 6, ¢) has

to be done. This involved transforming into Fourier spacthin GEMR toroidal angle coordinatg)(to
apply a phase shift that undoes the shifted metric procegf@ie An interpolation from the typical low res-
olution parallel grid to an high resolution one follows,eftvhich a phase factor gf(magnetic field pitch)

is applied to transform back to an unaligned representati@t is to move from a parallel coordinat¢o

a poloidal on&. To finalise, an inverse Fourier transform is applied by sumgnthe transformed toroidal
Fourier modes, which yields a single poloidal plane, whaeedata to provide to the REFMULX code,
namely,n. and By are then measured.

The preliminary GEMR simulations performed here served p®af of principle for our synthetic reflec-
tometer diagnostic. They assumed a simplified circular reigequilibrium with local plasma parameters
representative of a typical ASDEX Upgrade (AUG) L-mode bage, namely,

T, =T, =100eV, n; =ne = 2.0 x 109m=3

Mp = 3670 m,, ZeffZQ, B=20T, qg=3.5
R =1.65m, a=0.5m, Lyp=1L,/2=35cm

The radial domain includes both edge and scrape-off lay&LjSegions. It should be noted that the
continuation of this work is foreseen and will involve usinetter resolved (larger) turbulence simulations,
some of which are already under way, as well as simulatioimg uealistic AUG geometry.

4 Codes integration

Although simulating the same reality, different codes usértt models and mathematical descriptions of
that same reality, and a direct coupling between them is mofbea than not impossible. Some work has to
be done to integrate them and this is true for REFMULX and GENiRst, a standard for the data to share
between the codes is to be decided upon. We chose to use thefdiDfat, since it widely used in tokamak
turbulence models nowadays.

The time discretization of GEMR is usually much larger thlae done used in REFMULX. As a start point
for these simulations we have considered the plasma froztheitime frame of the probing signal. GEMR
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provides poloidal cuts of the plasma defined on a polar gagnietd) while REFMULX uses a Cartesian
one,(x,y). The points of the two meshes do not, obviously, coincidetiieamore, the points of the polar
grid are not equidistantly distributed, a fact that leadauseat the problem with the tools usual to problems
of unregular meshes. One of these techniques is Delaunarpabation and we used it to interpolate the
GEMR’s plasma description into the REFMULX'’s one with theeded spatial resolution @0 points/\.

To note that the corner of the Cartesian grids corresponplatied positions not included in the polar grid to
which a value must be given. They correspond however toiposiin a vacuum and are set to null density.

A similar interpolation procedure is done for the externalgmetic fieldB,, also provided by GEMR. The
interpolation is not performed on all the poloidal cut butyom the a region of interest (ROI) for the
simulation, in this work, the equatorial low-field side (LFS

Figure 1: GEMR provides a poloidal cut of the plasma defined polar geometryr, 0) (left). Only a
section of the poloidal cut is region of interest (ROI) foe tfimulation (center) and is Delauney
interpolated into a rectangular Cartesian region (right).

5 Simulations and results

With the provided density and magnetic field a frequency svegmulation was done with the plasma being
probed in the banda, 3040 GHz. A field contour snapshot is presented in Elg. 2—top I&fie field
detected in the waveguide, decoupled from the stronger emaission due to the use of an UTS, is processed
using a in-phase/quadrature (I/Q) detection. The reguftignals appear in Fifl 2—top right. They exhibit
a low frequency trend, amplitude modulation and some lowlénge high frequency components. Using
simple signal processing tools (polynomial detrend, lowspitering and amplitude normalization) a pair
of clean!/Q normalized signals is obtained which can be used to geptfasey(f) and from it the phase
derivativedp /0 f, one of the key ingredients for a profile evaluation. Anothessible technique is to use
a sliding fast Fourier transform (SFFT) on one of the 1/Q algrio get the beat frequengy; of the signal
and from it the phase derivativp/0f = 27 fp(0f/0t)~. The SFFT of the In-phase signal is show in
Fig.@—bottom left. The phase derivatives obtained usimgé¢htwo techniques appear on . 2—bottom
right with the blue curve showing the SFFT result and the teglecthe 1/Q one.
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Figure 2: A field contour snapshot of the simulation(top)ldiietected I/Q signals (top right). The SFFT
of the In-phase signal (bottom left). The phase derivatblgained with a SFFT of the in-phase signal
(blue) and with I/Q deconvolution (red) (bottom right).

Acknowledgements

This work, supported by the European Communities bustituto Superior €cnicq has been carried out
within the Contract of Association between EURATOM and IBihancial support was also received from
Fundago para a Céncia e Tecnologian the frame of the Contract of Associated Laboratory. Tlesvgi
and opinions expressed herein do not necessarily reflest thicthe European Commission, IST and FCT.

References

[1] B. Scott. Physic of Plasmasl2:p102307, 2005

[2] B. Scott and R. Hatzky35th EPS Conf. on Plasma Phys. Hersonis&%3 June 2008 ECA, Vol.32D,
P-5.031, 2008.

[3] L. Xu and N. Yuan.IEEE antennas and wireless propagation letté&rs335—-338, 2006.

[4] F.daSilva, S. Heuraux, S. Hacquin, and M. Manmurnal of Computational Physic203(2):467—-492,
2005.

[5] Jean-Pierre Berengedournal of Computational Physic$14(2):185-200, 1994.

5



[6] K. S. Yee.IEEE Transactions on Antennas and Propagatib#:302—307, 1966.

[7] Allen Taflove and Susan C. Hagnes€omputational Electrodynamics: The Finite-Differencen@&t
Domain Method, Second Edition

[8] K.S.Kunz, R.J.LuebbersThe finite difference time domain method for electromagneti
[9] M. A. Beer and G. HammettPhys. Plasmas3:4046, 1996.

[10] W. W. Lee.Phys. Fluids 26:556, 1983.

[11] B. Scott.Contrib. Plasma Phys46:714, 2006

[12] R. L. Dewar and A. H. GlassePhys. Fluids 26:3038, 1983.

[13] B. Scott.Phys. Plasmas3:447, 2001.



	Introduction
	REFMULX---The X-mode code
	GEMR
	Codes integration
	Simulations and results

