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Abstract

A 2D full-wave FDTD code is being developed and integrated with the output of a state-of-the-art
turbulence code implementing a complete synthetic diagnostic capable of coping with the complex signa-
ture of turbulence. The turbulence code used is a gyrofluid electromagnetic model with global geometry
(GEMR). The X-mode wave-propagation code solves Maxwell equations using a finite-difference time-
domain technique coupled to the ordinary differential equations of the motion or to differential equations
describing the plasma behaviour. The plasma current equation is handled through a novel solver (JE)
that allows a fast direct FDTD implementation which constitutes an improvement over the much slower
Runge-Kutta solvers, traditionally used.

1 Introduction

An important tool for the progress of reflectometry is numerical simulation, able to assess the measuring
capabilities of existing systems and to predict the performance of future ones in machines such as ITER and
DEMO. To simulate X-mode reflectometry in a comprehensive set of plasmas scenarios and experiments, a
two-dimensional (2D) full-wave finite-differences time-domain (FDTD) code is being developed and inte-
grated with the output of a state-of-the-art turbulence code, implementing a complete synthetic diagnostic
capable of coping with the complex signature of turbulence.The turbulence code used is a six moments
gyrofluid electromagnetic model with global geometry (GEMR) [1], [2]. The X-mode wave-propagation
code solves Maxwell equations using a FDTD technique coupled to the ordinary differential equations of
the motion or to differential equations describing the plasma behaviour. The plasma current equation is
handled through a novel solver (JE) [3] that allows a direct FDTD implementation, which constitutes an
improvement over the much slower Runge-Kutta solvers, traditionally used. Such numerical scheme can
be used to develop a 3D code including collision effects. Themain characteristics of the X-mode code
are presented together with a description of its integration with the turbulence code. This approach to a
synthetic diagnostic will provide a better understanding of the complexity associated with reflectometry
measurements.

2 REFMULX—The X-mode code

The need to simulate X-mode reflectometry led to the development of a 2D full-wave Maxwell FDTD,
REFMULX. This code complements the available O-mode code (REFMUL) drawing upon the experience
gained during REFMUL’s implementation, being an example, the rewriting of the unidirectional transparent
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source (UTS) [4] for X-mode. To better design a synthetic diagnostic the code has the possibility of include,
as plasma models, the results calculated by external codes which provide a more thorough description of the
plasma behaviour than the simpler internal models native toREFMULX. Internal models can be used when
a simplified description is needed to simulate a certain plasma behaviour (e.g. to isolate forward scattering
response without any Bragg backscattering) or to test an hypothesis in a controlled plasma scenario, while
the external plasma input would spring into action when a more close to reality scenario is envisaged. In
the code the plasma is considered stationary on wave-time reference (τplasma ≫ Twav), ions are considered
motionless (ion cyclotron frequencyωci ≪ ωwav) and thermal electron velocity smaller than phase velocity
(vth ≪ vph). We assume a transversal electric (TE), i.e. X-mode propagation (wave magnetic fieldH ‖ B0)
in a 2D plane (x–y) perpendicular to which a static magnetic field is set (B0) and no gradients are admitted
along this axis (∂/∂z = 0). With this considerations, Maxwell curl equations appearas a simpler set of
differential equations
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whereσEx,y andσ⋆Hz are responsible for the implementation of a perfectly matched layer (PML) [5]. The
plasma is handled by the current densityJx,y. This set of PDEs will be solved using FDTD with the classical
Yee algorithm [6]. More details on its implementation can befound in [7], [8]. Metallic conditions is set
using a numeric perfectly magnetic conductor condition [7]. To couple the propagation equations to the
plasma the equation of movement

dJ

dt
= ε0ω

2
pE − νJ + ωcb̂× J, (2)

must be solved at each time-step, whereb̂ represents the direction along the magnetic field. This is usually
the most delicate part when solving this kind of codes since an algorithm which is stable and efficient must
be found. We resort here to one proposed by Xu and Yuan [3] which fulfills these requirements. For 2D
without collisions (ν = 0) solvingJ is reduced to
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This is quite efficient when compared with Runge-Kuta of4th order (RK4), a technique traditionally used
to solve this problem. With this new schema only5 equations,3 for H andE and2 for J, have to be solved.
Compare it to RK4 where10 equations are needed forJ, and since these use all values ofH andE at every
half iteration, one has to solve two systems shifted ofn/2, adding to a grand total of16 equations.

Plasma densityne(r, t) is introduced in the definition ofω2
p = nee

2/ε0me and the external magnetic field
B0(r, t) throughωc = eB0/me. In this work they are given by an external code, GEMR.
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3 GEMR

The density fluctuations are computed by means of a three dimensional electromagnetic gyrofluid model
with global geometry. This model is derived by taking the first six moments of the gyrokinetic equation,
namely, densities, parallel velocities, parallel and perpendicular temperatures and parallel heat fluxes asso-
ciated with each temperature, all for each plasma species [9], and using a consistent treatment of the energy
conservation [1]. The extra equations necessary to yield a closed system are the ones that rule the fields,
namely, the gyrokinetic polarisation equation for the electrostatic potential [10], and the Ampère’s law for
the parallel magnetic vector potential, since the model is electromagnetic. The latter property together with
the fact that not only the fluctuations but also the background profiles are evolved in time implies that a
dynamical Shafranov shift and a correction to the magnetic field pitch are calculated and treated self consis-
tently in the model [11]. The geometry is global in the sense that the radial dependence of the geometrical
quantities is kept (no flux tube approximation made). The coordinates used are field aligned, and hence
non-orthogonal, due to the computational efficiency gain they allow in magnetised plasmas, where a strong
spatial anisotropy between the direction along the magnetic field, and the plane perpendicular to it exists.
The choice is to have one coordinate (s) aligned with the magnetic field, and the remaining (x andy) per-
pendicular to it, such that only one contravariant component of the magnetic field is finite (B · ∇s = Bs),
with the remaining two vanishing (B · ∇x = B · ∇y = 0) [12]. To avoid confusion it is noteworthy that the
coordinatesx, y are different from their counter parts in REFMULX. Since thegoal is to probe the plasma
electron density with reflectometry on the poloidal plane, post processing coordinates transformations from
the field aligned GEMR coordinate system(x, y, s) to the usual cylindrical coordinate system(x, θ, φ) has
to be done. This involved transforming into Fourier space inthe GEMR toroidal angle coordinate (y) to
apply a phase shift that undoes the shifted metric procedure[13]. An interpolation from the typical low res-
olution parallel grid to an high resolution one follows, after which a phase factor ofq (magnetic field pitch)
is applied to transform back to an unaligned representation, that is to move from a parallel coordinates to
a poloidal oneθ. To finalise, an inverse Fourier transform is applied by summing the transformed toroidal
Fourier modes, which yields a single poloidal plane, where the data to provide to the REFMULX code,
namely,ne andB0 are then measured.

The preliminary GEMR simulations performed here served as aproof of principle for our synthetic reflec-
tometer diagnostic. They assumed a simplified circular magnetic equilibrium with local plasma parameters
representative of a typical ASDEX Upgrade (AUG) L-mode discharge, namely,

Ti = Te = 100 eV, ni = ne = 2.0 × 1019m−3

MD = 3670me, Zeff = 2, B = 2.0 T, q = 3.5

R = 1.65 m, a = 0.5 m, LT = Ln/2 = 3.5 cm

The radial domain includes both edge and scrape-off layer (SOL) regions. It should be noted that the
continuation of this work is foreseen and will involve usingbetter resolved (larger) turbulence simulations,
some of which are already under way, as well as simulations using realistic AUG geometry.

4 Codes integration

Although simulating the same reality, different codes use distinct models and mathematical descriptions of
that same reality, and a direct coupling between them is moreoften than not impossible. Some work has to
be done to integrate them and this is true for REFMULX and GEMR. First, a standard for the data to share
between the codes is to be decided upon. We chose to use the HDF5 format, since it widely used in tokamak
turbulence models nowadays.

The time discretization of GEMR is usually much larger than the one used in REFMULX. As a start point
for these simulations we have considered the plasma frozen in the time frame of the probing signal. GEMR
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provides poloidal cuts of the plasma defined on a polar geometry (r, θ) while REFMULX uses a Cartesian
one,(x, y). The points of the two meshes do not, obviously, coincide. Furthermore, the points of the polar
grid are not equidistantly distributed, a fact that lead us to treat the problem with the tools usual to problems
of unregular meshes. One of these techniques is Delaunay interpolation and we used it to interpolate the
GEMR’s plasma description into the REFMULX’s one with the needed spatial resolution of20 points/λ.
To note that the corner of the Cartesian grids correspond to spatial positions not included in the polar grid to
which a value must be given. They correspond however to positions in a vacuum and are set to null density.

A similar interpolation procedure is done for the external magnetic fieldB0, also provided by GEMR. The
interpolation is not performed on all the poloidal cut but only in the a region of interest (ROI) for the
simulation, in this work, the equatorial low-field side (LFS).

Figure 1: GEMR provides a poloidal cut of the plasma defined ona polar geometry(r, θ) (left). Only a
section of the poloidal cut is region of interest (ROI) for the simulation (center) and is Delauney
interpolated into a rectangular Cartesian region (right).

5 Simulations and results

With the provided density and magnetic field a frequency sweep simulation was done with the plasma being
probed in the bandKa, 30–40 GHz. A field contour snapshot is presented in Fig. 2—top left.The field
detected in the waveguide, decoupled from the stronger mainemission due to the use of an UTS, is processed
using a in-phase/quadrature (I/Q) detection. The resulting signals appear in Fig. 2—top right. They exhibit
a low frequency trend, amplitude modulation and some low amplitude high frequency components. Using
simple signal processing tools (polynomial detrend, low pass filtering and amplitude normalization) a pair
of cleanI/Q normalized signals is obtained which can be used to get the phaseϕ(f) and from it the phase
derivative∂ϕ/∂f , one of the key ingredients for a profile evaluation. Anotherpossible technique is to use
a sliding fast Fourier transform (SFFT) on one of the I/Q signals to get the beat frequencyfB of the signal
and from it the phase derivative∂ϕ/∂f = 2πfB(∂f/∂t)−1. The SFFT of the In-phase signal is show in
Fig. 2—bottom left. The phase derivatives obtained using these two techniques appear on Fig. 2—bottom
right with the blue curve showing the SFFT result and the red curve the I/Q one.
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Figure 2: A field contour snapshot of the simulation(top left). Detected I/Q signals (top right). The SFFT
of the In-phase signal (bottom left). The phase derivativesobtained with a SFFT of the in-phase signal
(blue) and with I/Q deconvolution (red) (bottom right).
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