Turbulence measurements using Doppler reflectometry on ASDEX Upgrade

G.D.Conway, C.Tröster, W.Suttrop, J.Schirmer, E.Poli, C.Lechte*, H.Zohm and the ASDEX Upgrade Team
Max-Planck-Institut für Plasmaphysik, Euratom-Association IPP, Garching, Germany
* Institute für Plasmaforschung, Universität Stuttgart, Germany

Latest results on core and edge turbulence properties are presented from the multi-channel O and X-mode Doppler reflectometers on ASDEX Upgrade using adjustable tilt antennas with W-band ($75-110 \mathrm{GHz}$) and fixed tilt antennas in V-band ($50-75 \mathrm{GHz}$) frequency ranges. The antenna tilt induces a Doppler frequency shift $f_{D} \approx u_{\perp} . k_{\perp} / 2 \pi$ in the reflected microwave signal proportional to the perpendicular rotation velocity of the turbulence moving in the plasma, $u_{\perp}=\mathrm{v}_{E \times B}+\mathrm{v}_{p h}$, from which the radial electric field E_{r}, flow perturbations (ie. GAMs) or turbulence phase velocity $\mathrm{v} p h$ variations can be extracted with sub-millisecond temporal and sub-cm spatial (radial) resolution. The spectral peak amplitude $S\left(k_{\perp}\right) \propto|\delta n|^{2}$ is proportional to the turbulence strength at the probed perpendicular wave-number, $k_{\perp}=2 k_{\mathrm{o}} N_{\perp} \sim 2 k_{\mathrm{o}} \sin \left(\theta_{\mathrm{o}}\right)$, and the radial cutoff position ρ_{pol} (obtained via beam-tracing \& experimental density profiles). With the variable antenna tilt θ_{o} and W -band k_{o} range the turbulence $5<k_{\perp}<25 \mathrm{~cm}^{-1}$ from the tokamak mid-radius to the separatrix can be probed. In L-mode the turbulence amplitude rises towards the edge together with a substantial flattening of the k-spectrum. However, in H -mode the comparative $S\left(k_{\perp}\right)$ spectra show a decrease at all wavelengths and spectral steepening for $k \perp \rho_{\mathrm{s}}>1$ across the edge region. Initial attempts to measure an ETG signature using localized ECRH deposition show indications of enhanced fluctuation amplitude at high $k_{\perp} \rho_{\mathrm{s}} \sim 2$ also across the edge. The diagnostic response is contrasted with V-band fixed tilt measurements at low k_{\perp} and at high k_{\perp} using 2 D full-wave simulation codes.

