EFTSOMP 2015 (Lisbon)

Recent GAM studies in ASDEX Upgrade

P.Simon*[#], <u>G.D.Conway</u>, A.Biancalani, T.Happel, P.Manz*^{\$}, D.Prisiazhniuk, U.Stroth*^{\$}, and the ASDEX Upgrade Team

*Max-Planck-Institut für Plasmaphysik, Garching, Germany #IGVP, Universität Stuttgart, Germany \$Technische Universität München, Garching, Germany

- GAM parameter dependences freq. & amp. scaling
- GAM structure & propagation
- Magnetic signature
- Impact of non-axisymmetric (resonant) magnetic perturbations MP
- GAM envelope detection turb. interaction

Virtual Institute: Advanced Microwave Diagnostics

GAM measurements from Doppler reflectometry on AUG

• Complex spectra from I/Q signal and determine Doppler peak $f_D \& A_D$ (using weighted average CoG or Gaussian fit)

AMD

$$k_D = k_\perp u_\perp / 2\pi \qquad A_D \sim (\delta n)^2$$

- Repeat process on sliding window to obtain $f_D(t)$ and $A_D(t)$ time series
- Power spectrum of $f_D(t)$ to find peak at f_{GAM}
- Calculate GAM strength

$$A_{[kHz]} = 2\sqrt{\Sigma_{f_1}^{f_2}S(f_D)} 4/1.5$$

$$A_{GAM} = 2 \pi A_{[kHz]} / k_{\perp}$$

GAM Frequency Scaling: κ_b Dependence

- Freq. scale factor $G = \omega_{GAM} R_0/c_s$: $G \sim \sqrt{2}$ for "core" (inside ped. circular $\kappa_b \rightarrow 1$) [Windsor, PF 1968]
- Edge GAMs (ρ_{pol} > 0.95) show strong dependence on boundary elongation κ_b
- Conway *empirical* scaling → good overall prediction of edge GAMs (especially limiter config.)

GAM Frequency Scaling: Gao-scaling

- Analytic Gao scaling: Influence of κ less strong than Conway scaling
- All experimental data lie above Gao
- Gao (linear) gives min. ω_{GAM} non-linearity
 & X-point etc. may raise GAM frequency

$$\begin{split} \frac{\omega}{v_{\mathrm{t}i}/R_0} &= \sqrt{\left(\frac{7}{4} + \tau \right) \left(\frac{2}{\kappa^2 + 1}\right) \left(1 - \frac{s_\kappa}{2} \frac{7 + 2\tau}{7 + 4\tau}\right)} \\ &\times \left[1 - \varepsilon^2 \frac{9\kappa^2 + 3}{8\kappa^2 + 8} - \Delta'^2 \frac{\kappa^2}{4\kappa^2 + 4} + \varepsilon \Delta' \frac{4\kappa^2 + 1}{4\kappa^2 + 4} \right. \\ &\left. + \frac{\left(23 + 16\tau + 4\tau^2\right) (\kappa^2 + 1)}{2(7 + 4\tau)^2 q^2}\right] \quad \text{[Gao, PST 2011]} \end{split}$$

GAM Amplitude: Damping dependence on $\kappa \& q$

0.06

κ_b<1.2

Strong freq.

dependence

2< κ_b<1.4 0.05 .4< κ_b<1.6 GAM amp. (km/s) κ_b>1.6 0.04 0.03 0.02 0.01 0.00 1.0 10.0 Damping coefficient $\times 10^{10}$ Collisionless damping – w/o $k_r \rho_i$ (Finite Orbit Width) corrections [Gao, PoP 2008]: $qR\omega_{\text{GAM}}$ $\omega_{\rm GAM}$ $\gamma_{\rm GAM} =$ Uti

Dominant

at low q

- GAM amp. generally increases with *q*, but falls at high *q*
- Shape / κ_{b} dependence also present
- Stronger variation for divertor configuration
- NEMORB simulations in progress

Dominant

at high q

lacksquare

low $\kappa_{\rm b}$:

high κ_b :

lacksquare

lacksquare

_

_

10⁻⁵

10⁻⁶

10⁻⁷

⊃ower (arb.)

GAM Radial structure

2 forms of GAM radial structure:

freq. continuum

freq. eigenmode

Stronger GAM at low elongation $\kappa_{\rm b}$ (lim.)

٦

חו

GAM Propagation

G.D.Conway, 30-June-2015 : EFTSOMP (Lisbon)

Theory indicates $m = \pm 2$ magnetic #29725 0.10 component [Wahlberg, PPCF 2009] Power (arb.) 10'0 15 kHz Doppler: strong eigenmode GAM at 15 kHz BAL 15 (B3) 1.00 15 kHz Power (arb.) BAL 14 (B31-10) Power (arb.) .0 BAL 13 (B31-09) BAL 12 (B31-08) C09-01 BAL 06 (B31-02 BAL 11/B31-07 09-32 0.01 BAL 10 (B31 0.1 BAL 09 (B3 20 30 40 50 0 10 100 Frequency (kHz) Power (arb.) 15 kHz No B_r signal near outer mid-• 10 plane, but weak at top For GAM expect: $B_{pol} > B_r$ B_r coils (LFS, midplane) 10 20 30 40 50 0 Mode analysis: $m \sim 2$ structure Frequency (kHz) B_{pol} coils (poloidal coverage)

GAM magnetic signature: Divertor discharge

GAM magnetic signature: Limiter discharge at low κ

- Doppler: GAM freq. continuum: 15 – 20 kHz
- Magnetics: approx.
 m = 2 mode structure
- Tilt due to choice of reference probe
- Why different f_{GAM} at top & bottom?

Impact of RMPs on GAM

Axisymmetric GAMs Flow: n = 0, m = 0Pres: $n = 0, m = \pm 1$ Mag: $n = 0, m = \pm 2 ...$

- Without MP: Strong GAM (flow peak) inside separatrix
- With MP: Flow peak weakens & freq. increases (nb. no T_e change)
- Radial max. moves closer to E_r min.
- $\langle \delta n_{\rm e} \rangle$ increases, $\langle \delta E_{\rm r} \rangle$ decreases

n = 2, sig. resonant $B_{\rm T} = -2.5 \text{ T}, I_{\rm p} = 0.8 \text{ MA}$ $q_{95} \sim 5.2$, $n_0 = 1.5 \times 10^{19} \text{ m}^{-3}$

G.D.Conway, 30-June-2015 : EFTSOMP (Lisbon)

Impact of RMPs on GAM

- Enhanced edge magnetic "signature" above MP threshold (in both δb_r & δb_θ)
- Non-MP GAM *normally* only δb_{θ} signature

- $\delta b_{\rm r} \& \delta b_{\theta}$: Complex toroidal structure
- GAM interacts with MP field \rightarrow non axisymmetric ($n \neq 0$) GAM
- GAM reduced in stochastic regions

n = 2 MP sig. resonant $B_{\rm T} = -2.5$ T, $I_{\rm p} = 0.8$ MA $q_{95} \sim 5.2$, $n_{\rm o} = 1.5 \times 10^{19}$ m⁻³

G.D.Conway, 30-June-2015 : EFTSOMP (Lisbon)

Impact of RMPs on GAM: Magnetic signature

G.D.Conway, 30-June-2015 : EFTSOMP (Lisbon)

GAM / turbulence interaction

- Theory \rightarrow GAM modulates the HF density fluctuations
- Extract flow from *envelope* of *high-pass filtered* δn_e using Env(*n*) = $\sqrt{\{nn^* + \tilde{\mathfrak{H}}(n)\tilde{\mathfrak{H}}^*(n)\}}$ [Nagashima, PPCF 2007]
- Correlate Env(δn_e) {PCR} & f_D {DR} → Φ ~ 0 cross-phase at tok. mid-plane (different tor. sectors)
- $Env(A)_{\{DR\}} \& f_{D \{DR\}} \rightarrow \Phi \sim 0.0$ Expect $\Phi = \pi/2$ at top?

Conclusions

- GAM frequency > Gao formular (gives min. freq.)
 - f_{GAM} raised by non-linear effects and possibly higher shaping orders (X-point)
 - Still to include Z_{eff} in scaling
- GAM amplitude
 - Scales roughly inversely with damping (drive effects under investigation)
 - Different behaviour for divertor config.
 - Numerical simulations progressing
- GAM structure & propagation
 - Either radial continuum or eigenmode (κ dependence collisionality under investigation)
 - Propagates mostly inward: $k_r \sim 0.7$ rad/cm & $v_r \sim 1.6$ km/s (radial acceleration under invest.)
 - Roughly m = 2 magnetic structure (eigenmode vs continuum)
- External MPs strong impact
 - non-axisymmetric GAM structure?
 - Stochastization weakens & ev. suppresses GAM despite turb. rise
- GAM turbulence interaction evident

GAM Frequency Scaling: Core vs. Edge

- GAMs contribute to effective shearing rate & reduce turb. correlation length if $f_{GAM} < \tau_d^{-1}$
- Analysis of new limiter and divertor with varying κ_b line-up with previous results
- Core GAMs (limiter only) follow classic scaling (even with κ_b scan)
- Edge GAMs deviate from core scaling

GAM Amplitude: Dependence on $\kappa \& q$

