

- B. Schmid¹, P. Manz^{2,3}, M. Ramisch¹, U. Stroth^{2,3}
- ¹ IGVP, Universität Stuttgart, 70569 Stuttgart, Germany
- ² Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
- ³ Physik-Department E28, Technische Universität München, 85747 Garching, Germany

Turbulent transport and energy transfer

Drift wave – zonal flow coupling

Energy transfer to the zonal flow

Zonal flow scaling with collisionality

B. Schmid, EFTSOMP-Workshop 2015

www.igvp.uni-stuttgart.de

Drift wave – zonal flow interaction

$$\frac{\partial}{\partial t} \left\langle v_{\theta} \right\rangle = -\frac{\partial}{\partial r} \left\langle \tilde{v}_{r} \tilde{v}_{\theta} \right\rangle$$

 $\partial_t n + \{\phi, n\} + \kappa_n \partial_y \phi = C^{-1}(\phi - n)$ $\partial_t \Omega + \{\phi, \Omega\} = C^{-1}(\phi - n)$

Geodesic transfer effect

$$\frac{\partial}{\partial t} \langle v_{\theta} \rangle = -\frac{\partial}{\partial r} \langle \tilde{v}_{r} \tilde{v}_{\theta} \rangle - \omega_{B} \langle p_{e} \sin s \rangle$$

[G.Birkenmeier, Dissertation (2012)]

Stellarator TJ-K

- Major plasma radius: R = 0.6 m
- Minor plasma radius:
- Magnetic field:
- Microwave heating:
- Pulse duration:
- Gas:
- Electron temperature:
- Ion temperature:
- Electron density:
- Iota:

a = 0.1 m B = 50 - 300 mT ∴ 3 kW at 2.45 GHz 2 kW at 8.0 GHz up to 45 min H₂, D₂, He, Ne, Ar are: $T_e \approx 10 \text{ eV}$ $T_i \leq 1 \text{ eV}$ $n_e \approx 2 \cdot 10^{17} \text{ m}^{-3}$ 0.13-0.4

Whole confinement region accessible to Langmuir-probesDischarges dimensionally similar to fusion edge plasmas

Poloidal Reynolds-stress array

- 128 shielded Langmuir probes
- 32 probes on each of four flux surfaces
- Ion-saturation current $I_{i,sat}$ and floating potential Φ_{fl} with 1 MHz sampling rate
- Determination of the vorticity $\Omega = \nabla_{\perp}^2 \frac{\phi}{R}$

Direct determination of the radial **Reynolds-stress gradient**

 $\partial_r \left\langle \tilde{v}_r \tilde{v}_{\theta} \right\rangle$

Reynolds-stress measurement

kf-spectra

Zonal potential and Reynolds stress

- Time evolution of the potential $\tilde{\phi}$ on a flux surface
- Zonal maximum around the trigger time-point $\tau \approx 0 \,\mu s$

- Reynolds-stress $R = \langle \widetilde{v}_r \widetilde{v}_{\theta} \rangle_t$ on a flux surface
- Triggered on flux-surface averaged potential $\langle \boldsymbol{\tilde{\Phi}} \rangle$

 $\sqrt{12}$

Drift wave - zonal flow interaction

• For a constant biphase relation the quadratic crossbicoherence takes non-zero values $b_{n,n,\phi}^2(k_1,k_2)$

$${}_{\phi}(k_{1},k_{2}) = \frac{\left| \left\langle \hat{n}(k_{1},t)\hat{n}(k_{2},t)\hat{\phi}^{*}(k_{1}+k_{2},t) \right\rangle \right|^{2}}{\left\langle \left| \hat{n}(k_{1},t)\hat{n}(k_{2},t) \right|^{2} \right\rangle \left\langle \left| \hat{\phi}(k_{1}+k_{2},t) \right|^{2} \right\rangle}$$

where the resonance condition is

$$k_3 = k_1 + k_2$$

 The integrated quadratic bicoherence shows the overall coupling to the k₃ mode

$$b_{n,n,\phi}^{2}(k_{3}) = \sum_{k_{1},k_{2}} b_{n,n,\phi}^{2}(k_{1},k_{2}) \,\delta_{k_{1}+k_{2},k_{3}}$$

17

Drift wave - zonal flow coupling

- $b_{n,n,\phi}^2(k_1,k_2)$ and $b_{n,n,\phi}^2(k_3)$ conditional averaged on zonal potential $\langle \tilde{\Phi} \rangle$ with nearly 373k realizations
- Various density modes couple to the zonal flow (k₃ = 0)
- Sign for non-local inverse cascade assumed for drift wave - zonal flow interaction

Time resolved bicoherence

- Time resolved for 256 µs around the zonal-flow occurrence
- Averaged total quadratic bicoherence

 $\sum_{k} b^2(k_3) \Big/ \sum_{k_2}$

- Integrated quadratic bicoherence $b^2(k_3)$
- Strong three-wave coupling around trigger time-point $\tau \approx 0 \,\mu s$

Time resolved drift wave - zonal flow coupling

 Time evolution of all modes which satisfy the resonance condition

 $k_1 + k_2 = 0$

- Strong coupling around the trigger condition
- Large contributions for density modes with poloidal mode number *m* of 1, 4, 6 and 10

Calculation of the energy transfer with Kim method

Nonlinear wave - coupling equation

$$\frac{\partial \varphi(k,t)}{\partial t} = \Lambda_k^L(k)\varphi(k,t) + \frac{1}{2}\sum_{k=k_1+k_2}\Lambda_k^Q(k_1,k_2)\varphi(k_1,t)\varphi(k_2,t)$$

Spectral power transfer equation

$$\frac{\partial}{\partial t}P_{k} = 2\gamma_{k}P_{k} + \sum_{k=k_{1}+k_{2}}T_{k}(k_{1},k_{2})$$

Nonlinear spectral power transfer function

$$T_{k}(k_{1},k_{2}) = \operatorname{Re}\left(\Lambda_{k}^{Q}(k_{1},k_{2})\left\langle\varphi(k_{1},t)\varphi(k_{2},t)\varphi(k,t)^{*}\right\rangle\right)$$

[J.S.Kim et al, PoP 3 (1996)]

Energy transfer into the zonal flow

- $\varphi(k_1) = n(k_1), \ \varphi(k_2) = n(k_2)$ and $\varphi(k) = \phi(k)$ used for the nonlinear power transfer function T_k
- Conditional averaged on zonal potential $\langle \boldsymbol{\tilde{\Phi}} \rangle$
- Energy transfer to the m₃ = 0 potential mode

Zonal flow scaling with collisionality

Relative spectral zonal flow power $P_{\rm ZF}/P_{\rm total}$

Collisionality

$$C = \frac{\hat{\mathcal{V}}_e}{\hat{k}_{\parallel}^2}$$

- Normalized electron collision frequency $\hat{v_e}$
- Normalized parallel wavenumber \hat{k}_{\parallel}

University of Stuttgart Germany

Energy transfer to the m=0 potential mode

Pseudo-Reynolds stress

 Reynolds stress from potential fluctuations

$$R_{\phi} = \left\langle \widetilde{v}_{x} \widetilde{v}_{y} \right\rangle \sim \left\langle \frac{\partial \widetilde{\phi}}{\partial y} \frac{\partial \widetilde{\phi}}{\partial x} \right\rangle$$

 Pseudo-Reynolds stress from density fluctuations

$$R_n = \left\langle \frac{\partial \widetilde{n}}{\partial y} \frac{\partial \widetilde{n}}{\partial x} \right\rangle$$

$$n = \phi - C \underbrace{\left(\partial_t n + \left\{\phi, n\right\} + \kappa_n \partial_y \phi\right)}_A$$

$$R_n = R_f - C\{A, f\} + C^2 \P_x A \P_y A$$

 Calculation of the Reynolds stress- and pseudo Reynolds stress drive

$$-\frac{\partial}{\partial r}R$$

Coupling of density and potential

Correlation between Reynolds stressand pseudo Reynolds stress drive

Energy transfer at high magnetic field

- Energy transfer to the zonal flow $T_m(m_3=0)$ at high magnetic field $B \sim 300 \,\mathrm{mT}$
- Stronger increase as for measurements at low magnetic field

Coupling to the m=6 density mode

- $b_{n,n,\phi}^2(m_1,m_2)$ and $b_{n,n,\phi}^2(m_3)$ conditional averaged on zonal potential $\langle \mathbf{\Phi} \rangle$
- Coupling to m=6 density mode
- Distinct coupling for high magnetic field

50

С

60

Energy transfer to the m=6 density mode

С

Magnetic field with sixfold symmetry

Magnetic field strength |B| and geodesic curvature κ_{g} on a flux surface

[G.Birkenmeier, Dissertation (2012)]

Summary

- Time resolved nonlinear drift wave zonal flow coupling in k-space
- Energy transfer to the zonal flow calculated with Kim method
- Increased energy transfer to the zonal flow and to the m=6 density mode for lower collisionality
- Increased crosscorrelation between Reynolds stress- and pseudo Reynolds stress drive indicates stronger coupling

Thank you for your attention!

Zonal flow drive

Zonal-flow drive equation:

 $\frac{\partial}{\partial t} \left\langle v_{\theta} \right\rangle = -\frac{\partial}{\partial r} \left\langle \widetilde{v}_{r} \widetilde{v}_{\theta} \right\rangle$

- The Reynolds-stress drive is maximal before the trigger time-point
- The flow velocity follows the Reynolds-stress drive phase shifted

