Workshop EFTSOMP, 29-30 June 2015, Lisbon, Portugal

First observation of the ion internal transport barrier on HL-2A

Presented by D.L. Yu¹⁾

On behalf of

Y. L. Wei¹⁾, L. Liu¹⁾, K. Ida²⁾, M. von Hellermann^{3,4)}, J. Y. Cao¹⁾, A. P. Sun¹⁾, Z. B. Shi¹⁾, W. J. Chen¹⁾, Q. Ma¹⁾, X. X. He¹⁾, K.J. Zhao¹⁾, X.Q. Ji¹⁾, Y. Zhou¹⁾, M. Jiang¹⁾, W. L. Zhong¹⁾, W. Deng¹⁾, Y.G. Li¹⁾, J.M. Gao¹⁾, Yi Liu¹⁾, Y. Xu¹⁾, L. W. Yan¹⁾, Q. W. Yang¹⁾, X. T. Ding¹⁾, J.Q. Dong¹⁾, X. R. Duan¹⁾, Yong Liu¹⁾ and HL-2A team

1) Southwestern Institute of Physics, Chengdu 610041, China

2) National Institute for Fusion Science, Toki 509-5292, Japan

3) ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance, France

4) FOM-Institute for Plasma physics "Rijnhuizen", Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein, Netherlands

Outline

Background and motivations
The CXRS on the HL-2A
Observation of the ITB
Summary

Background and Motivations

Background and Motivations

Background and Motivations

The fusion power plant requires an operating point characterized by high beta, high energy containment time, and a large fraction of bootstrap current;

The plasma possessing internal transport barriers (ITBs) is a basis for the steady state operation of a tokamak power plant;

 Discharge with ITB is a promising candidate regime for ITER.

The CXRS System

The system consists of the collection optics, fibers, spectrometer (F/2.8) and data acquisition system; Double-slit incidence fiber bundle; The grating with 2160g/mm (about) 0.011nm/pixel@530nm); ♦ 32/64 channels are available; Frequency higher than 400 Hz; \diamond 200 Hz of T_i & V_t measurement are realized. [1] Yu D L, RSI., 85 11E402(2014) [2] Wei Y L,RSI., 85 103503(2014)

The features of the ITB

The ion temperature gradient becomes steeper when the stored plasma energy is higher;

The gradient becomes steeper and the stored energy increases when the sawtooth disappeared.

Comparison between sawtooth and LLM

The steady state of the ITB can be obtained for the plasmas without sawtooth; • The ion temperature and toroidal rotation oscillate in the plasma core; • The ion temperature is higher than that of electron in the plasma core; The ion temperature of sawtooth plasma can be as high as that of the long-lasting mode, but the peakness is not.

Formation of the ITB

From the ion temperature and toroidal rotation, the ITB forms at ~535 ms;

The plasma density peaked in the core during the ITB formation.

The ITB forms right after the small size long lived mode;

The q=1 surfaces of sawtooth discharge

Estimated by the sawtooth crash, the width between the q=1 surfaces increases at the beginning of the NBI;
 The width will decrease if the ECDU is learnabled;

The width will decrease if the ECRH is launched;

• Duration for the width increase of q=1 surfaces is about 63 ms.

The ITB foot (1)

The ITB formation is LLM (fishbone oscillations) accompanying;
From the ECE and CXRS, the ITB foot locates at the q=1 surface.

The ITB foot (2)

~3.7 cm

1.80

 \leftrightarrow

ECRH controlling the ITB

The LLM/fishbone can survive whereas the ITB is suppressed by the ECRH.

The q profiles during the ITB

The critical value of R/L_{Ti}

• The critical value of R/L_{Ti} from 16 shots (~490 data) have been compared;

• The R/L_{Ti} with EPM (long lasting modes and fishbone oscillations) are higher than the others.

Confinement outside the q=1 surfaces

The Ti (0) increases with the R/L_{Ti}, whereas the T_i (r/a=0.5) decrease when the R/L_{Ti} is higher than 16; The R/L_{Ti}(~0.5) features the same trend, the mechanism is not known.

Influence of temperature ratio on ITB formation

The R/L_{Ti} decreases with the temperature ratio $(T_e(0)/T_i(0))$; The critical value of R/L_{Ti} is higher than16 when the ratio is less than 1.

χ $_i$ of the ITB

The ion thermal diffusivity can be as low as neoclassical level.
The ITBs can be more easily formed at the beginning of the NBI heating phase.

Summary

The ITB can be developed with very low NBI power;

◆The ITB foot locates at q=1 surface;

The ITB features EPM (LLM and fishbone oscillations) indicating the weakly positive or negative magnetic shear can be helpful to the ITB formation;

The ITB formation is closely related to current drive of the NBI;
The ITB can be more frequently observed at the beginning of the NBI heating;

• The temperature ratio plays an important role in the ITB formation.

Thank you for your attention!

L÷.