Towards Geometric Finite-Element Particle-in-Cell Schemes for Gyrokinetics

Michael Kraus ${ }^{1,2}$ (michael.kraus@ipp.mpg.de)

In collaboration with Eric Sonnendrücker ${ }^{1,2}$, Katharina Kormann ${ }^{1,2}$, Omar Maj ${ }^{1}$, Hiroaki Yoshimura ${ }^{3}$, Philip Morrison ${ }^{4}$, Joshua Burby ${ }^{5}$ and Leland Ellison ${ }^{6}$
${ }^{1}$ Max-Planck-Institut für Plasmaphysik, Garching
${ }^{2}$ Technische Universität München, Zentrum Mathematik
${ }^{3}$ Waseda University, School of Science and Engineering
${ }^{4}$ University of Texas at Austin, Institute for Fusion Studies
${ }^{5}$ Courant Institute of Mathematical Sciences, New York University
${ }^{6}$ Princeton Plasma Physics Laboratory

Outline

(1) Geometric Numerical Integration
(2) Discrete Differential Forms
(3) Discrete Poisson Brackets
(4) Variational Integrators
(5) Summary and Outlook
(6) Guiding Centre Dynamics

Structure-Preserving Discretisation

- geometric structure: global property of differential equations, which can be defined independently of particular coordinate representations ${ }^{1}$
e.g., topology, conservation laws, symmetries, constraints, identities
- preservation of geometric properties is advantageous for numerical stability and crucial for long time simulations
- bounds global error growth and reduces numerical artifacts
- various families
- Lie group integrators, discrete Euler-Poincaré methods
- integral preserving schemes, discrete variational derivative method, discrete gradients
- discrete differential forms and mimetic methods
- symplectic and multisymplectic methods
- variational and Poisson integrators

[^0]
Geometric Structures of the Vlasov-Maxwell System

- Vlasov equation in Lagrangian coordinates

$$
\begin{aligned}
\dot{X}_{s}=V_{s}, & \dot{V}_{s}
\end{aligned}=e_{s} E\left(t, X_{s}\right)+\frac{e}{c} V_{s} \times B\left(t, X_{s}\right), ~\left(t, X_{s}(t), V_{s}(t)\right)=f_{s}\left(X_{s}(0), V_{s}(0)\right)
$$

- Maxwell's equations in Eulerian coordinates

$$
\begin{array}{llrl}
\frac{\partial E}{\partial t} & =\nabla \times B-j, & \nabla \cdot E=-\rho, & \rho(t, x)=\sum_{s} e_{s} \int d v f_{s}(t, x, v) \\
\frac{\partial B}{\partial t}=-\nabla \times E, & \nabla \cdot B=0, & j(t, x)=\sum_{s} e_{s} \int d v f_{s}(t, x, v) v
\end{array}
$$

- the spaces of electrodynamics have a deRham complex structure
- Poisson structure (antisymmetric bracket, Jacobi identity)
- variational structure (Hamilton's action principle)
- energy, momentum and charge conservation (Noether theorem)

Differential Forms

- mathematical language of vector analysis too limited to provide an intuitive description of electrodynamics (only two types of objects)
- ϕ : scalar field
- E: change of the electric potential over an infinitesimal path element
- B : flux density (integrated over a two-dimensional surface)
- ρ : charge density (integrated over a three-dimensional volume)
- tensor analysis is concise and general, but very abstract
- subset of tensor analysis: calculus of differential forms, combining much of the generality of tensors with the simplicity of vectors
- in three dimensional space: four types of forms
- 0 -forms Λ^{0} : scalar quantities (scalar field)
- 1 -forms Λ^{1} : vectorial quantities (field intensity)
- 2 -forms Λ^{2} : vectorial quantities (flux density)
- 3 -forms Λ^{3} : scalar quantities (scalar density)

Maxwell's Equations and the deRham Complex

- electromagnetic fields as differential forms

$$
\phi \in \Lambda^{0}(\Omega), \quad A, E \in \Lambda^{1}(\Omega), \quad B, J \in \Lambda^{2}(\Omega), \quad \rho \in \Lambda^{3}(\Omega)
$$

- exterior derivative $\mathbf{d}: \Lambda^{i} \rightarrow \Lambda^{i+1}$ generalises grad, curl, div
- the spaces of Maxwell's equations build an exact deRham sequence
- for geometers

$$
0 \rightarrow \Lambda^{0}(\Omega) \xrightarrow{\mathbf{d}} \Lambda^{1}(\Omega) \xrightarrow{\mathbf{d}} \Lambda^{2}(\Omega) \xrightarrow{\mathbf{d}} \Lambda^{3}(\Omega) \rightarrow 0
$$

- for analysts
$0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0$
- exactness: the range of $\mathbf{d}^{i}: \Lambda^{i} \rightarrow \Lambda^{i+1}$ equals the kernel of \mathbf{d}^{i+1}

$$
\mathbf{d d} \bullet=0, \quad \text { curl grad } \bullet=0, \quad \operatorname{div} \operatorname{curl} \bullet=0
$$

Discrete deRham Complex

- discrete deRham complex

$$
\begin{array}{rlcccccccc}
0 & \rightarrow & \Lambda^{0}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda^{1}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda^{2}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda^{3}(\Omega) & \rightarrow \\
& & \downarrow \pi_{h}^{0} & & \downarrow \pi_{h}^{1} & & & \downarrow \pi_{h}^{2} & & \\
& \downarrow \pi_{h}^{3} & & \\
0 & \rightarrow & \Lambda_{h}^{0}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda_{h}^{1}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda_{h}^{2}(\Omega) & \xrightarrow{\mathbf{d}} & \Lambda_{h}^{3}(\Omega) & \rightarrow
\end{array} 0
$$

- the discrete spaces $\Lambda_{h}^{i} \subset \Lambda^{i}$ are finite element spaces of differential forms, building an exact deRham sequence
- compatibility: projections commuted with the exterior derivative
- by translating geometrical and topological tools, which are used in the analysis of stability and well-posedness of PDEs, to the discrete level one can show that exactness and compatibility guarantee stability ${ }^{2}$

[^1]
Spline Differential Forms

- electrostatic potential $\phi_{h} \in \Lambda_{h}^{0}(\Omega)$

$$
\phi_{h}(t, x)=\sum_{i, j, k} \phi_{i, j, k}(t) \Lambda_{i, j, k}^{0}(x)
$$

- zero-form basis

$$
\Lambda_{h}^{0}(\Omega)=\operatorname{span}\left\{S_{i}^{p}\left(x^{1}\right) S_{j}^{p}\left(x^{2}\right) S_{k}^{p}\left(x^{3}\right)\right\}
$$

- the i-th basic splines (B-spline) of order p is defined by

$$
S_{i}^{p}(x)=\frac{x-x_{i}}{x_{i+p-1}-x_{i}} S_{i}^{p-1}(x)+\frac{x_{i+p}-x}{x_{i+p}-x_{i+1}} S_{i+1}^{p-1}(x)
$$

where

$$
S_{i}^{1}(x)= \begin{cases}1 & x \in\left[x_{j}, x_{j+1}\right) \\ 0 & \text { else }\end{cases}
$$

Spline Differential Forms

- electric field intensity $E_{h} \in \Lambda_{h}^{1}(\Omega)$

$$
E_{h}(t, x)=\sum_{i, j, k} e_{i, j, k}(t) \Lambda_{i, j, k}^{1}(x)
$$

- one-form basis

$$
\left.\left.\left.\begin{array}{rl}
\Lambda_{h}^{1}(\Omega)=\operatorname{span} & \left\{\binom{D_{i}^{p}\left(x^{1}\right) S_{j}^{p}\left(x^{2}\right) S_{k}^{p}\left(x^{3}\right)}{0}\right. \\
0
\end{array}\right),\left\{\begin{array}{c}
0 \\
S_{i}^{p}\left(x^{1}\right) D_{j}^{p}\left(x^{2}\right) S_{k}^{p}\left(x^{3}\right) \\
0
\end{array}\right), ~ \begin{array}{c}
0 \\
0 \\
S_{i}^{p}\left(x^{1}\right) S_{j}^{p}\left(x^{2}\right) D_{k}^{p}\left(x^{3}\right)
\end{array}\right)\right\} .
$$

- spline differentials

$$
\frac{d}{d x} S_{i}^{p}(x)=D_{i}^{p}(x)-D_{i+1}^{p}(x), \quad D_{i}^{p}(x)=p \frac{S_{i}^{p-1}(x)}{x_{i+p}-x_{i}}
$$

Spline Differential Forms

- magnetic flux density $B_{h} \in \Lambda_{h}^{2}(\Omega)$

$$
B_{h}(t, x)=\sum_{i, j, k} b_{i, j, k}(t) \Lambda_{i, j, k}^{2}(x)
$$

- two-form basis

$$
\begin{aligned}
\Lambda_{h}^{2}(\Omega)=\operatorname{span}\{ & \left(\begin{array}{c}
S_{i}^{p}\left(x^{1}\right) D_{j}^{p}\left(x^{2}\right) D_{k}^{p}\left(x^{3}\right) \\
0 \\
0
\end{array}\right) \\
& \binom{D_{i}^{p}\left(x^{1}\right) S_{j}^{p}\left(x^{2}\right) D_{k}^{p}\left(x^{3}\right)}{0} \\
& \left.\left(\begin{array}{c}
0 \\
0 \\
D_{i}^{p}\left(x^{1}\right) D_{j}^{p}\left(x^{2}\right) S_{k}^{p}\left(x^{3}\right)
\end{array}\right)\right\}
\end{aligned}
$$

- spline differentials

$$
\frac{d}{d x} S_{i}^{p}(x)=D_{i}^{p}(x)-D_{i+1}^{p}(x), \quad D_{i}^{p}(x)=p \frac{S_{i}^{p-1}(x)}{x_{i+p}-x_{i}}
$$

Spline Differential Forms

- charge density $\rho_{h} \in \Lambda_{h}^{3}(\Omega)$

$$
\rho_{h}(t, x)=\sum_{i, j, k} \rho_{i, j, k}(t) \Lambda_{i, j, k}^{3}(x)
$$

- three-form basis

$$
\Lambda_{h}^{3}(\Omega)=\operatorname{span}\left\{D_{i}^{p}\left(x^{1}\right) D_{j}^{p}\left(x^{2}\right) D_{k}^{p}\left(x^{3}\right)\right\}
$$

- spline differentials

$$
\frac{d}{d x} S_{i}^{p}(x)=D_{i}^{p}(x)-D_{i+1}^{p}(x), \quad D_{i}^{p}(x)=p \frac{S_{i}^{p-1}(x)}{x_{i+p}-x_{i}}
$$

Morrison-Marsden-Weinstein Bracket

חין

- Vlasov-Maxwell noncanonical Hamiltonian structure

$$
\begin{aligned}
& \{F, G\}[f, E, B]=\int d x d v f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right]+\int d x d v f\left(\frac{\partial}{\partial v} \frac{\delta F}{\delta f} \cdot \frac{\delta G}{\delta E}-\frac{\partial}{\partial v} \frac{\delta G}{\delta f} \cdot \frac{\delta F}{\delta E}\right) \\
& \quad+\int d x d v f B \cdot\left(\frac{\partial}{\partial v} \frac{\delta F}{\delta f} \times \frac{\partial}{\partial v} \frac{\delta G}{\delta f}\right)+\int d x\left(\frac{\delta F}{\delta E} \cdot \nabla \times \frac{\delta G}{\delta B}-\frac{\delta G}{\delta E} \cdot \nabla \times \frac{\delta F}{\delta B}\right)
\end{aligned}
$$

- Hamiltonian: sum of the kinetic energy of the particles, the electrostatic field energy and the magnetic field energy

$$
\mathcal{H}=\frac{1}{2} \int|v|^{2} f(x, v) d x d v+\frac{1}{2} \int\left(|E(x)|^{2}+|B(x)|^{2}\right) d x
$$

- time evolution of any functional $F[f, E, B]$

$$
\frac{d}{d t} F[f, E, B]=\{F, \mathcal{H}\}
$$

Discretisation of the Vlasov-Maxwell Poisson System

- finite-dimensional representation of the fields f, E, B
- discretisation of the brackets

$$
\begin{aligned}
& \{F, G\}[f, E, B]=\int d x d v f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right]+\int d x d v f\left(\frac{\partial}{\partial v} \frac{\delta F}{\delta f} \cdot \frac{\delta G}{\delta E}-\frac{\partial}{\partial v} \frac{\delta G}{\delta f} \cdot \frac{\delta F}{\delta E}\right) \\
& \quad+\int d x d v f B \cdot\left(\frac{\partial}{\partial v} \frac{\delta F}{\delta f} \times \frac{\partial}{\partial v} \frac{\delta G}{\delta f}\right)+\int d x\left(\frac{\delta F}{\delta E} \cdot \nabla \times \frac{\delta G}{\delta B}-\frac{\delta G}{\delta E} \cdot \nabla \times \frac{\delta F}{\delta B}\right)
\end{aligned}
$$

- discretisation of functionals

$$
\mathcal{H}=\frac{1}{2} \int|v|^{2} f(x, v) d x d v+\frac{1}{2} \int\left(|E(x)|^{2}+|B(x)|^{2}\right) d x
$$

- time discretisation

$$
\frac{d}{d t} F[f, E, B]=\{F, \mathcal{H}\}
$$

Discretisation of the Fields

- particle-like distribution function for N_{p} particles labeled by a,

$$
f_{h}(x, v, t)=\sum_{a=1}^{N_{p}} w_{a} \delta\left(x-x_{a}(t)\right) \delta\left(v-v_{a}(t)\right)
$$

with weights w_{a}, particle positions x_{a} and particle velocities v_{a}

- 1-form and 2-form basis functions (vector-valued)

$$
\Lambda_{\alpha}^{1}(x)=\left(\begin{array}{c}
\Lambda_{\alpha}^{1,1}(x) \\
\Lambda_{\alpha}^{1,2}(x) \\
\Lambda_{\alpha}^{1,3}(x)
\end{array}\right), \quad \quad \Lambda_{\alpha}^{2}(x)=\left(\begin{array}{c}
\Lambda_{\alpha}^{2,1}(x) \\
\Lambda_{\alpha}^{2,2}(x) \\
\Lambda_{\alpha}^{2,3}(x)
\end{array}\right)
$$

- semi-discrete electric field E_{h} and magnetic field B_{h}

$$
E_{h}(t, x)=\sum_{\alpha \in \mathbb{Z}^{3}} e_{\alpha}(t) \Lambda_{\alpha}^{1}(x), \quad B_{h}(t, x)=\sum_{\alpha \in \mathbb{Z}^{3}} b_{\alpha}(t) \Lambda_{\alpha}^{2}(x)
$$

with coefficient vectors e and b

Discretisation of the Distribution Function

- functionals of the distribution function, $F[f]$, restricted to particle-like distribution functions,

$$
f_{h}(x, v, t)=\sum_{a=1}^{N_{p}} w_{a} \delta\left(x-x_{a}(t)\right) \delta\left(v-v_{a}(t)\right)
$$

become functions of the particle phasespace trajectories,

$$
F\left[f_{h}\right]=\hat{F}\left(x_{a}, v_{a}\right)
$$

- replace functional derivatives with partial derivatives

$$
\frac{\partial \hat{F}}{\partial x_{a}}=\left.w_{a} \frac{\partial}{\partial x} \frac{\delta F}{\delta f}\right|_{\left(x_{a}, v_{a}\right)} \quad \text { and } \quad \frac{\partial \hat{F}}{\partial v_{a}}=\left.w_{a} \frac{\partial}{\partial v} \frac{\delta F}{\delta f}\right|_{\left(x_{a}, v_{a}\right)}
$$

- rewrite kinetic bracket as semi-discrete particle bracket

$$
\begin{aligned}
\int d x d v f\left[\frac{\delta F}{\delta f}, \frac{\delta G}{\delta f}\right] & =\left.\sum_{a} w_{a}\left(\frac{\partial}{\partial x} \frac{\delta F}{\delta f} \cdot \frac{\partial}{\partial v} \frac{\delta G}{\delta f}-\frac{\partial}{\partial v} \frac{\delta F}{\delta f} \cdot \frac{\partial}{\partial x} \frac{\delta G}{\delta f}\right)\right|_{\left(x_{a}, v_{a}\right)} \\
& =\sum_{a} \frac{1}{w_{a}}\left(\frac{\partial \hat{F}}{\partial x_{a}} \cdot \frac{\partial \hat{G}}{\partial v_{a}}-\frac{\partial \hat{G}}{\partial x_{a}} \cdot \frac{\partial \hat{F}}{\partial v_{a}}\right)
\end{aligned}
$$

Discretisation of the Electrodynamic Fields

- semi-discrete electric field E_{h} and magnetic field B_{h}

$$
E_{h}(x)=\sum_{\alpha \in \mathbb{Z}^{3}} e_{\alpha}(t) \Lambda_{\alpha}^{1}(x), \quad B_{h}(x)=\sum_{\alpha \in \mathbb{Z}^{3}} b_{\alpha}(t) \Lambda_{\alpha}^{2}(x)
$$

- functionals $F[E]$ and $F[B]$, restricted to the semi-discrete fields E_{h} and B_{h}, can be considered as functions $\hat{F}(e)$ and $\hat{F}(b)$ of the finite element coefficients

$$
F\left[E_{h}\right]=\hat{F}(e), \quad F\left[B_{h}\right]=\hat{F}(b)
$$

- functional derivatives of linear and quadratic functionals $F\left[E_{h}\right]$ and $F\left[B_{h}\right]$ can be replaced with partial derivatives of $\hat{F}(e)$ and $\hat{F}(b)$,

$$
\frac{\delta F\left[E_{h}\right]}{\delta E}=\sum_{\alpha, \beta} \frac{\partial \hat{F}(e)}{\partial e_{\alpha}}\left(M_{1}^{-1}\right)_{\alpha \beta} \Lambda_{\beta}^{1}(x), \quad \frac{\delta F\left[B_{h}\right]}{\delta B}=\sum_{\alpha, \beta} \frac{\partial \hat{F}(b)}{\partial b_{\alpha}}\left(M_{2}^{-1}\right)_{\alpha \beta} \Lambda_{\beta}^{2}(x)
$$

with mass matrices

$$
\left(M_{1}\right)_{\alpha \beta}=\int d x \Lambda_{\alpha}^{1}(x) \Lambda_{\beta}^{1}(x), \quad\left(M_{2}\right)_{\alpha \beta}=\int d x \Lambda_{\alpha}^{2}(x) \Lambda_{\beta}^{2}(x)
$$

Semi-Discrete Poisson Bracket

- semi-discrete Poisson bracket

$$
\begin{aligned}
& \{\hat{F}, \hat{G}\}_{d}\left[x_{a}, v_{a}, e_{\alpha}, b_{\alpha}\right]=\sum_{a} \frac{1}{w_{a}}\left(\frac{\partial \hat{F}}{\partial x_{a}} \cdot \frac{\partial \hat{G}}{\partial v_{a}}-\frac{\partial \hat{G}}{\partial x_{a}} \cdot \frac{\partial \hat{F}}{\partial v_{a}}\right) \\
& \quad+\sum_{a} \sum_{\alpha, \beta}\left(\frac{\partial \hat{F}}{\partial v_{a}} \cdot \frac{\partial \hat{G}}{\partial e_{\alpha}}\left(M_{1}^{-1}\right)_{\alpha \beta} \Lambda_{\beta}^{1}\left(x_{a}\right)-\frac{\partial \hat{G}}{\partial v_{a}} \cdot \frac{\partial \hat{F}}{\partial e_{\alpha}}\left(M_{1}^{-1}\right)_{\alpha \beta} \Lambda_{\beta}^{1}\left(x_{a}\right)\right) \\
& \quad+\sum_{a} \sum_{\alpha} b_{\alpha}(t) \Lambda_{\alpha}^{2}\left(x_{a}\right) \cdot\left(\frac{1}{w_{a}} \frac{\partial \hat{F}}{\partial v_{a}} \times \frac{\partial \hat{G}}{\partial v_{a}}\right) \\
& \quad+\sum_{\alpha, \beta, \gamma, \eta}\left(\frac{\partial \hat{F}}{\partial e_{\alpha}}\left(M_{1}^{-1}\right)_{\alpha \beta} R_{\beta \eta}^{T}\left(M_{2}^{-1}\right)_{\eta \gamma} \frac{\partial \hat{G}}{\partial b_{\gamma}}-\frac{\partial \hat{G}}{\partial e_{\alpha}}\left(M_{1}^{-1}\right)_{\alpha \beta} R_{\beta \eta}^{T}\left(M_{2}^{-1}\right)_{\eta \gamma} \frac{\partial \hat{F}}{\partial b_{\gamma}}\right)
\end{aligned}
$$

- rotation matrix (decomposable into mass matrix M_{2} and incidence matrix \mathcal{I})

$$
R_{\alpha \beta}=\int d x \Lambda_{\alpha}^{2}(x) \cdot \nabla \times \Lambda_{\beta}^{1}(x), \quad R=M_{2} \mathcal{I}
$$

Semi-Discrete Poisson System

- semi-discrete equations of motion

$$
\dot{x}_{p}=\left\{x_{p}, \hat{\mathcal{H}}\right\}_{d}, \quad \dot{v}_{p}=\left\{v_{p}, \hat{\mathcal{H}}\right\}_{d}, \quad \dot{e}=\{e, \hat{\mathcal{H}}\}_{d}, \quad \dot{b}=\{b, \hat{\mathcal{H}}\}_{d}
$$

with discrete Hamiltonian

$$
\hat{\mathcal{H}}=\frac{1}{2} \sum_{a}\left|v_{a}\right|^{2} w_{a}+\frac{1}{2} \sum_{\alpha, \beta} e_{\alpha}(t)\left(M_{1}\right)_{\alpha \beta} e_{\beta}(t)+\frac{1}{2} \sum_{\alpha, \beta} b_{\alpha}(t)\left(M_{2}\right)_{\alpha \beta} b_{\beta}(t)
$$

- Poisson system: $\dot{y}=P(y) \nabla \hat{\mathcal{H}}(y)$ with $y=\left(x_{p}, v_{p}, e, b\right)$

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{p} \\
v_{p} \\
e \\
b
\end{array}\right)=\left(\begin{array}{cccc}
0 & M_{p}^{-1} & 0 & 0 \\
-M_{p}^{-1} & \widehat{B}_{h}^{T}\left(t, x_{p}\right) M_{p}^{-1} & \left(\Lambda^{1}\left(x_{p}\right)\right)^{T} M_{1}^{-1} & 0 \\
0 & -M_{1}^{-1}\left(\Lambda^{1}\left(x_{p}\right)\right) & 0 & M_{1}^{-1} \mathcal{I}^{T} \\
0 & 0 & -\mathcal{I} M_{1}^{-1} & 0
\end{array}\right)\left(\begin{array}{c}
\partial \hat{\mathcal{H}} / \partial x_{p} \\
\partial \hat{\mathcal{H}} / \partial v_{p} \\
\partial \hat{\mathcal{H}} / \partial e \\
\partial \hat{\mathcal{H}} / \partial b
\end{array}\right)
$$

- P is anti-symmetric and satisfies the Jacobi identity if $\operatorname{div} B_{h}=0$ and

$$
\frac{\partial \Lambda_{k i}^{1}\left(x_{a}\right)}{\partial x_{a}^{j}}-\frac{\partial \Lambda_{k j}^{1}\left(x_{a}\right)}{\partial x_{a}^{i}}=\sum_{\alpha}\left(\widehat{\Lambda}_{\alpha}^{2}\left(x_{a}\right)\right)_{i j} \mathcal{I}_{\alpha k} \quad \text { for all } a, i, j, k,
$$

\rightarrow recursion relation for splines, evaluated at all particle positions

Splitting Methods

- Hamiltonian splitting ${ }^{3}$

$$
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{p_{1}}+\hat{\mathcal{H}}_{p_{2}}+\hat{\mathcal{H}}_{p_{3}}+\hat{\mathcal{H}}_{E}+\hat{\mathcal{H}}_{B}
$$

with

$$
\hat{\mathcal{H}}_{p_{i}}=\frac{1}{2}\left(v_{p}^{i}\right)^{T} M_{p} v_{p}^{i}, \quad \hat{\mathcal{H}}_{E}=\frac{1}{2} e^{T} M_{1} e, \quad \hat{\mathcal{H}}_{B}=\frac{1}{2} b^{T} M_{2} b
$$

- split semi-discrete Vlasov-Maxwell equations into five subsystems

$$
\dot{y}=\left\{y, \hat{\mathcal{H}}_{p_{i}}\right\}_{d}, \quad \dot{y}=\left\{y, \hat{\mathcal{H}}_{E}\right\}_{d}, \quad \dot{y}=\left\{y, \hat{\mathcal{H}}_{B}\right\}_{d}
$$

- the exact solution of each subsystem constitutes a Poisson map

$$
\varphi_{t, p_{i}}\left(y_{0}\right)=y_{0}+\int_{0}^{t}\left\{y, \hat{\mathcal{H}}_{p_{i}}\right\}_{d} d t, \quad \varphi_{t, E}\left(y_{0}\right)=y_{0}+\int_{0}^{t}\left\{y, \hat{\mathcal{H}}_{E}\right\}_{d} d t, \quad \ldots
$$

[^2]
Splitting Methods

- Hamiltonian splitting

$$
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{p_{1}}+\hat{\mathcal{H}}_{p_{2}}+\hat{\mathcal{H}}_{p_{3}}+\hat{\mathcal{H}}_{E}+\hat{\mathcal{H}}_{B}
$$

- compositions of Poisson maps are themselves Poisson maps
- construct Poisson structure preserving integration methods by composition of exact solutions of the subsystems
- first order time integrator: Lie-Trotter composition

$$
\Psi_{h}=\varphi_{h, E} \circ \varphi_{h, B} \circ \varphi_{h, p_{1}} \circ \varphi_{h, p_{2}} \circ \varphi_{h, p_{3}}
$$

- second order time integrator: symmetric composition

$$
\begin{aligned}
& \Psi_{h}=\varphi_{h / 2, E} \circ \varphi_{h / 2, B} \circ \varphi_{h / 2, p_{1}} \circ \varphi_{h / 2, p_{2}} \circ \varphi_{h, p_{3}} \\
& \circ \varphi_{h / 2, p_{2}} \circ \varphi_{h / 2, p_{1}} \circ \varphi_{h / 2, B} \circ \varphi_{h / 2, E}
\end{aligned}
$$

Variational Integrators

- systematic way to derive structure-preserving discretisation schemes for Lagrangian and Hamiltonian dynamical systems
- preserved structures
- discrete symplectic structure
\rightarrow good long-time energy behaviour (bounded error)
- discrete momenta related to symmetries of the discrete Lagrangian
\rightarrow discrete Noether theorem provides discrete symmetry condition and discrete form of conservation laws
- idea
- discretisation of the Lagrangian and Hamilton's principle of stationary action
- application of the discrete action principle to the discrete Lagrangian to obtain discrete Euler-Lagrange equations directly
- allow for straight-forward derivation of integrators for coupled systems (e.g., coupling of particles and fields for particle-in-cell schemes)

Continuous and Discrete Action Principle

- action: functional of a curve $q(t)$

$$
\mathcal{A}[q(t)]=\int_{0}^{T} L(q(t), \dot{q}(t)) d t
$$

- Hamilton's principle of stationary action: among all possible trajectories the system follows the one that makes the action integral \mathcal{A} stationary

$$
\delta \mathcal{A}=0 \quad \rightarrow \quad \frac{\partial L}{\partial q}(q, \dot{q})-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)=0
$$

- approximate Lagrangian with finite differences and quadrature formula

$$
L_{d}\left(q_{n}, q_{n+1}\right)=h L\left(\frac{q_{n}+q_{n+1}}{2}, \frac{q_{n+1}-q_{n}}{h}\right)
$$

- stationarity of the discrete action: discrete Euler-Lagrange equations
$\delta \mathcal{A}_{d}=\delta \sum_{n=0}^{N-1} L_{d}\left(q_{n}, q_{n+1}\right)=0 \quad \rightarrow \quad D_{2} L_{d}\left(q_{n-1}, q_{n}\right)+D_{1} L_{d}\left(q_{n}, q_{n+1}\right)=0$

Continuous and Discrete Action Principle

- action: functional of a curve $q(t)$

$$
\mathcal{A}[q(t)]=\int_{0}^{T} L(q(t), \dot{q}(t)) d t
$$

- Hamilton's principle of stationary action: among all possible trajectories the system follows the one that makes the action integral \mathcal{A} stationary

$$
\delta \mathcal{A}=0 \quad \rightarrow \quad \frac{\partial L}{\partial q}(q, \dot{q})-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)=0
$$

- approximate Lagrangian with finite differences and quadrature formula

$$
L_{d}\left(q_{n}, q_{n+1}\right)=h L\left(\frac{q_{n}+q_{n+1}}{2}, \frac{q_{n+1}-q_{n}}{h}\right)
$$

- stationarity of the discrete action: discrete Euler-Lagrange equations
$\delta \mathcal{A}_{d}=\delta \sum_{n=0}^{N-1} L_{d}\left(q_{n}, q_{n+1}\right)=0 \quad \rightarrow \quad D_{2} L_{d}\left(q_{n-1}, q_{n}\right)+D_{1} L_{d}\left(q_{n}, q_{n+1}\right)=0$

Continuous Action Principle for Vlasov-Maxwell

- variations of the action

$$
\begin{array}{r}
\mathcal{A}=\sum_{s} \int d t \int d X \int d V f_{s}(t, X, V)\left[m V+e_{s} A(t, X)\right] \cdot \dot{X}-\left[\frac{1}{2} m|V|^{2}+e_{s} \phi(t, X)\right] \\
+\frac{1}{2} \int d t \int d x\left[\left|\nabla \phi(t, x)-\frac{\partial A}{\partial t}(t, x)\right|^{2}-|\nabla \times A(t, x)|^{2}\right]
\end{array}
$$

lead to the same equations of motion as the Poisson bracket upon

$$
E=-\nabla \phi-\frac{\partial A}{\partial t}, \quad B=\nabla \times A
$$

- the Vlasov-Maxwell action is (weakly) gauge invariant

$$
\mathcal{A}[x, v, A+\nabla \psi, \phi]=\mathcal{A}[x, v, A, \phi]+\text { boundary terms }
$$

- corresponding conservation law: charge conservation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot j=0
$$

Semi-Discrete Action Principle for Vlasov-Maxwell

Π

- semi-discrete action (particles, splines, time-continuous)
$\mathcal{A}_{h}=\frac{1}{N} \sum_{a} \int_{0}^{T} d t\left[m_{a} v_{a}(t)+e_{a} A_{h}\left(t, x_{a}(t)\right)\right] \cdot \dot{x}_{a}(t)-\left[\frac{1}{2} m_{a}\left|v_{a}(t)\right|^{2}+e_{a} \phi_{h}\left(t, x_{a}(t)\right)\right]$

$$
+\frac{1}{2} \int_{0}^{T} d t \int d x\left[\left|\nabla \phi_{h}(t, x)-\frac{\partial A_{h}}{\partial t}(t, x)\right|^{2}-\left|\nabla \times A_{h}(t, x)\right|^{2}\right]
$$

\rightarrow same equations of motion as the semi-discrete Poisson bracket, upon

$$
E_{h}=-\nabla \phi_{h}-\frac{\partial A_{h}}{\partial t}, \quad \quad B_{h}=\nabla \times A_{h}
$$

- the semi-discrete action is still (weakly) gauge invariant

$$
\mathcal{A}_{h}\left[x, v, A_{h}+\nabla \psi_{h}, \phi_{h}\right]=\mathcal{A}_{h}\left[x, v, A_{h}, \phi_{h}\right]+\text { boundary terms }
$$

- corresponding conservation law: charge conservation

$$
\frac{\partial \rho_{h}}{\partial t}+\nabla \cdot j_{h}=0
$$

Gauge Invariance of the Discrete Action

- time discretisation (e.g., Lagrange polynomials)

$$
\left.y_{h}(t)\right|_{\left[t_{n}, t_{n+1}\right]}=\sum_{m=1}^{s} Y_{n, m} \varphi_{n}^{m}(t), \quad \varphi_{n}^{m}(t)=l^{m}\left(\left(t-t_{n}\right) /\left(t_{n+1}-t_{n}\right)\right)
$$

- variations of fully discrete action

$$
\begin{aligned}
\delta \int_{t_{n}}^{t_{n+1}} d t A_{h}\left(t, x_{h}(t)\right) \cdot \dot{x}_{h}(t) & =\int_{t_{n}}^{t_{n+1}} d t \sum_{l, m=1}^{s} \delta X_{n, m} \cdot \nabla A_{h}\left(t, x_{h}(t)\right) \cdot X_{n, l} \dot{\varphi}_{n}^{l}(t) \varphi_{n}^{m}(t) \\
& =\int_{t_{n}}^{t_{n+1}} d t \sum_{m=1}^{s} A_{h}\left(t, x_{h}(t)\right) \cdot \delta X_{n, m} \dot{\varphi}_{n}^{m}(t)+\ldots \\
& -\int_{t_{n}}^{t_{n+1}} d t \sum_{l, m=1}^{s} \delta X_{n, m} \cdot \nabla A_{h}\left(t, x_{h}(t)\right) \cdot X_{n, l} \dot{\varphi}_{n}^{l}(t) \varphi_{n}^{m}(t)
\end{aligned}
$$

Gauge Invariance of the Discrete Action

- time discretisation (e.g., Lagrange polynomials)

$$
\left.y_{h}(t)\right|_{\left[t_{n}, t_{n+1}\right]}=\sum_{m=1}^{s} Y_{n, m} \varphi_{n}^{m}(t), \quad \varphi_{n}^{m}(t)=l^{m}\left(\left(t-t_{n}\right) /\left(t_{n+1}-t_{n}\right)\right)
$$

- variations of fully discrete action
$\delta \int_{t_{n}}^{t_{n+1}} d t A_{h}\left(t, x_{h}(t)\right) \cdot \dot{x}_{h}(t)=\int_{t_{n}}^{t_{n+1}} d t \sum_{l, m=1}^{s} \delta X_{n, m} \cdot \nabla A_{h}\left(t, x_{h}(t)\right) \cdot X_{n, l} \dot{\varphi}_{n}^{l}(t) \varphi_{n}^{m}(t)$

$$
\begin{aligned}
& +\int_{t_{n}}^{t_{n+1}} d t \sum_{m=1}^{s} A_{h}\left(t, x_{h}(t)\right) \cdot \delta X_{n, m} \dot{\varphi}_{n}^{m}(t)+\ldots \\
& =\int_{t_{n}}^{t_{n+1}} d t \sum_{l, m=1}^{s} \delta X_{n, m} \cdot B_{h}\left(t, x_{h}(t)\right) \cdot X_{n, l} \dot{\varphi}_{n}^{l}(t) \varphi_{n}^{m}(t)+\ldots
\end{aligned}
$$

Summary and Outlook

- Maxwell equations
- discrete differential forms (discrete exterior calculus, mimetic discretisation): splines, mixed finite elements, mimetic spectral elements, virtual elements
- stability: exactness and compatibility of the finite element deRham complex
- discrete Poisson brackets and variational integrators
- Poisson structure is retained at the semi-discrete level
- splitting methods or variational integrators for time integration
- gauge invariance guarantees charge conservation
- variational integrators for degenerate Lagrangians
- multi-step methods featuring parasitic modes or one-step methods for an extended system drifting off the constraint submanifold
- projection of variational integrators for the unconstrained extended system
- very good long-time stability and conservation of energy and momentum maps
- ongoing work
- application to the Hamiltonian Gyrokinetic Vlasov-Maxwell System (Burby et al., Physics Letters A, 379, pp. 2073-2077, 2015)
- extension towards discrete metriplectic brackets for dissipative systems

Guiding Centre Dynamics

Π

- charged particle phasespace Lagrangian

$$
L(x, \dot{x}, v, \dot{v})=(A(x)+v) \cdot \dot{x}-\frac{1}{2} v^{2}
$$

- coordinate transformation

$$
\left(x^{i}, v^{i}\right) \quad \rightarrow \quad\left(X^{i}, \theta, u, \mu\right)
$$

with $\rho=b \times v_{\perp} /|B|$ and

$$
u=b \cdot \dot{X}, \quad v_{\perp}=v-u b, \quad \mu=v_{\perp}^{2} / 2|B|, \quad B=\nabla \times A, \quad b=B /|B|
$$

so that the Lagrangian becomes

$$
L(q, \dot{q})=(A(X+\rho)+u b(X+\rho)) \cdot(\dot{X}+\dot{\rho})+\mu \dot{\theta}-\frac{1}{2} u^{2}-\mu B(X+\rho)
$$

- strong magnetic fields: neglect finite gyroradius effects
- guiding centre Lagrangian ($q=\left(X^{i}, u\right)$ and μ a parameter)

$$
L(q, \dot{q})=(A(X)+u b(X)) \cdot \dot{X}-\frac{1}{2} u^{2}-\mu B(X)
$$

Variational Guiding Centre Integrators

- guiding centre Lagrangian

$$
L(q, \dot{q})=(A(X)+u b(X)) \cdot \dot{X}-\frac{1}{2} u^{2}-\mu B(X), \quad q=\left(X^{i}, u\right)
$$

is degenerate (linear in velocities), that is

$$
\frac{\partial^{2} L}{\partial \dot{q}^{i} \partial \dot{q}^{j}}=0
$$

and therefore leads to first order ordinary differential equations

- straight-forward application of the discrete action principle leads to multi-step variational integrators

$$
D_{2} L_{d}\left(q_{k-1}, q_{k}\right)+D_{1} L_{d}\left(q_{k}, q_{k+1}\right)=0
$$

\rightarrow we need two sets of initial data even though we have first order ODEs
\rightarrow support parasitic modes, not long-time stable

Variational Guiding Centre Integrators

- use discrete Legendre transform to obtain position-momentum form

$$
\begin{aligned}
& p_{k}=-D_{1} L_{d}\left(q_{k}, q_{k+1}\right) \\
& p_{k+1}=D_{2} L_{d}\left(q_{k}, q_{k+1}\right)
\end{aligned}
$$

- use continuous Legendre transform to obtain the second initial condition

$$
p_{0}=\frac{\partial L}{\partial \dot{q}}\left(q_{0}\right)=\alpha\left(q_{0}\right), \quad \alpha(q)=A(X)+u b(X)
$$

- one-step method for an extended dynamical system (p, q) whose dynamics is constrained to a subspace defined by

$$
\phi(p, q)=p-\alpha(q)=0 \quad \text { (Dirac constraint) }
$$

- variational integrators will in general not satisfy the constraint
- geometric interpretation for appearance of parasitic modes

Orthogonal Projection

- orthogonal symplectic projection of primary constraint, $z=(p, q)$

$$
\begin{aligned}
\tilde{z}_{n+1} & =\Psi_{h}\left(z_{n}\right) & & \text { apply variational one-step method } \\
z_{n+1} & =\tilde{z}_{n+1}+\Omega^{-1} \nabla \phi^{T}\left(z_{n+1}\right) \lambda_{n+1} & & \text { project on constraint submanifold } \\
0 & =\phi\left(z_{n+1}\right) & &
\end{aligned}
$$

with Ω the canonical symplectic matrix

$$
\Omega=\left(\begin{array}{rr}
\mathbb{0} & -\mathbb{1} \\
\mathbb{1} & \mathbb{0}
\end{array}\right)
$$

Symmetric Projection

- symmetric symplectic projection of primary constraint, $z=(p, q)$

$$
\begin{array}{rlr}
\tilde{z}_{k} & =z_{k}+\Omega^{-1} \nabla \phi^{T}\left(z_{k}\right) \lambda_{k+1} & \text { perturb initial data } \\
\tilde{z}_{k+1} & =\Psi_{h}\left(\tilde{z}_{k}\right) & \\
z_{k+1} & =\tilde{z}_{k+1}+\Omega^{-1} \nabla \phi^{T}\left(z_{k+1}\right) \lambda_{k+1} & \\
& \text { apply variational one-step method on constraint submanifold } \\
0 & =\phi\left(z_{k+1}\right) . &
\end{array}
$$

with Ω the canonical symplectic matrix

$$
\Omega=\left(\begin{array}{rr}
\mathbb{0} & -\mathbb{1} \\
\mathbb{1} & \mathbb{0}
\end{array}\right)
$$

Passing and Trapped Particle 2D, $h=\frac{\tau_{b}}{50}, n_{b}=25.000$

Explicit RK4
 (1 stage)

Passing Particle 4D, $h=\frac{\tau_{b}}{50}, n_{b}=10^{6}, n_{t}=5 \times 10^{7} \quad \|{ }^{1}$

Variational Runge-Kutta, 2 stages, order 4, symmetric projection

Passing Particle 4D, $h=\frac{\tau_{b}}{50}, n_{b}=10^{6}, n_{t}=5 \times 10^{7} \quad \| P$

Explicit Runge-Kutta, order 4

[^0]: ${ }^{1}$ Christiansen, Munthe-Kaas, Owren: Topics in Structure-Preserving Discretization, Acta Numerica 2011

[^1]: ${ }^{2}$ Arnold, Falk, Winther: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1-155, 2006.
 Arnold, Falk, Winther: Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the AMS 47, 281-354, 2010.

[^2]: ${ }^{3}$ Crouseilles, Einkemmer, Faou. Hamiltonian splitting for the Vlasov- Maxwell equations. Journal of Computational Physics 283, 224-240, 2015.
 Qin, He, Zhang, Liu, Xiao, Wang. Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations". arXiv:1504.07785, 2015.
 He, Qin, Sun, Xiao, Zhang, Liu. Hamiltonian integration methods for Vlasov-Maxwell equations. arXiv:1505.06076, 2015.

