Quasisymmetry far from the magnetic axis

Iván Calvo¹, Félix I. Parra^{2,3}, José Luis Velasco¹ and J. Arturo Alonso¹ ¹Laboratorio Nacional de Fusión, CIEMAT ²Rudolf Peierls Centre for Theoretical Physics, University of Oxford ³Culham Centre for Fusion Energy

> European Fusion Theory Conference, Lisbon October 6, 2015

Iván Calvo, CIEMAT, Madrid

MOTIVATION

- Undamped flows in optimized stellarators: quasisymmetry (QS).
- Why we will focus on *approximate* QS.

AND THEN ...

- Part I: When can a stellarator be considered quasisymmetric (QS) in practice?
 - Formal criterion for 'closeness to quasisymmetry'.
- Part II: What is the size of the radial region in which the criterion can be satisfied?

Particle trajectories in a tokamak and in a stellarator

$$\mathbf{v}_{M,s} = \frac{v_{||}^2}{\Omega_s} \hat{\mathbf{b}} \times (\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}}) + \frac{v_{\perp}^2}{2B\Omega_s} \hat{\mathbf{b}} \times \nabla B, \qquad v_{\psi,s} := \mathbf{v}_{M,s} \cdot \nabla \psi,$$

where Ω_s is the gyrofrequency of species s and ψ the toroidal flux.

- In general, in a stellarator, $\overline{v_{\psi,s}} \neq 0$ and trapped particles drift away.

Optimized stellarators: omnigeneity and quasisymmetry

- A stellarator is called omnigeneous if *v*_{ψ,s} = 0. [Cary and Shasharina (1997), Parra *et al.* (2015)].
- Flows are generally damped in an omnigeneous stellarator.
- A stellarator that possesses a direction in which flows are undamped is called quasisymmetric [Helander and Simakov (2008)].
 - Quasisymmetry implies omnigeneity.

In a QS stellarator, there exist privileged sets of coordinates {ψ, Θ, ζ}, where Θ is a poloidal angle and ζ is a toroidal angle, such that |B(ψ, Θ, ζ)| has a symmetry direction as shown in the figure. They are called Boozer coordinates.

- The outer region of a stellarator plasma is dominated by turbulence. See, for example, [Dinklage *et al.* (2013)].
- Flow shear reduces turbulence.
- It seems reasonable to investigate configurations that admit large flows (i.e. such that flows are undamped) as a route to achieve large flow shear.

- The outer region of a stellarator plasma is dominated by turbulence. See, for example, [Dinklage *et al.* (2013)].
- Flow shear reduces turbulence.
- It seems reasonable to investigate configurations that admit large flows (i.e. such that flows are undamped) as a route to achieve large flow shear.

However, it only makes sense to consider stellarators close to quasisymmetry...

 Exact quasisymmetry cannot be achieved throughout the entire plasma volume [Garren and Boozer (1991); expansion around the magnetic axis].

Can we quantify closeness to quasisymmetry? When is flow damping sufficiently small?

Part I: When can a stellarator be considered QS in practice?

Take a divergenceless vector field of the form $\mathbf{Y} = B^{-1} \hat{\mathbf{b}} \times \nabla \psi + h \mathbf{B}$.

Total flow damping in the direction Y:

$$\left\langle (\nabla \cdot \boldsymbol{\pi}_i) \cdot \mathbf{Y} \right\rangle_{\psi} = -\frac{1}{c} \left\langle \mathbf{J}_n \cdot \nabla \psi \right\rangle_{\psi} + \left\langle (\nabla \cdot \boldsymbol{\pi}_{\mathrm{gy},i}) \cdot \mathbf{Y} \right\rangle_{\psi},$$

where π_i is the viscosity tensor, $\langle \mathbf{J}_n \cdot \nabla \psi \rangle_{\psi}$ is the neoclassical radial electric current density and $\pi_{gy,i}$ is the gyroviscosity.

- $c^{-1}\langle \mathbf{J}_n \cdot \nabla \psi \rangle_{\psi} \sim \rho_{*i}^2 c^{-1} e n_i v_{ti} |\nabla \psi|$ is the largest term in a generic stellarator.
- $\left\langle (\nabla \cdot \pi_{\mathrm{gy},i}) \cdot \mathbf{Y} \right\rangle_{\psi} \sim \rho_{*i}^{3} c^{-1} e n_{i} v_{ti} |\nabla \psi|$ includes turbulent and higherorder neoclassical contributions.

Here, c is the speed of light, e is the proton charge, v_{ti} is the ion thermal speed, n_i is the ion density, and ρ_{*i} is the ion Larmor radius over the major radius, R_0 .

Iván Calvo, CIEMAT, Madrid

Part I: When can a stellarator be considered QS in practice?

$$\left\langle (\nabla \cdot \boldsymbol{\pi}_i) \cdot \mathbf{Y} \right\rangle_{\psi} = \left[\rho_{*i}^2 A_{\mathrm{nc}} + \rho_{*i}^3 A_{\mathrm{gy}} \right] c^{-1} e n_i v_{ti} |\nabla \psi| + \dots$$

• $A_{\rm nc}$ and $A_{\rm gy}$ are O(1), generically.

- $A_{\rm nc} \equiv 0$ if and only if the stellarator is quasisymmetric.
- The idea: Take $\mathbf{B} = \mathbf{B}_0 + \alpha \mathbf{B}_1$, where \mathbf{B}_0 is quasisymmetric and $0 < \alpha \ll 1$.
 - We expect $A_{\rm nc} \sim \alpha^q \nu_{*i}^r \overline{A}_{\rm nc}$, with $\overline{A}_{\rm nc} = O(1)$ and ν_{*i} the ion collisionality.
 - Compare $\rho_{*i}^2 \alpha^q \nu_{*i}^r$ with ρ_{*i}^3 to obtain the criterion.
- The stellarator can be considered quasisymmetric in practice if

$$\alpha \ll (\rho_{*i}\nu_{*i}^{-r})^{1/q}.$$

The scalings depend on the collisionality regime (obvious) and on the size of the gradients of B_1 (not so obvious).

Perturbations with small gradients [Calvo, Parra, Velasco and Alonso (2013)]

B = $\mathbf{B}_0 + \alpha \mathbf{B}_1$, where $\alpha \mathbf{B}_1$ is a small deviation from quasisymmetry. **I**f

 $|\alpha \partial_{\Theta} B_1|/|\partial_{\Theta} B_0| \sim \alpha \quad \text{ and } \quad |\alpha \partial_{\zeta} B_1|/|\partial_{\zeta} B_0| \sim \alpha,$

then the drift-kinetic equation and $\langle J_n \cdot \nabla \psi \rangle_{\psi}$ can be Taylor expanded, and it can be proven that

$$\left\langle (\nabla \cdot \boldsymbol{\pi}_i) \cdot \mathbf{Y} \right\rangle_{\psi} = \left[\rho_{*i}^2 \alpha^2 \hat{A}_{\mathrm{nc}} + \rho_{*i}^3 A_{\mathrm{gy}} \right] c^{-1} e n_i v_{ti} |\nabla \psi| + \dots$$

True for any collisionality regime but, of course, the size of $\hat{A}_{\rm nc}$ depends on ν_{*i} . In the $1/\nu$ regime we obtain the criterion

$$\alpha \ll \sqrt{\nu_{*i}\rho_{*i}}$$

for closeness to quasisymmetry.

Perturbations with large gradients [Calvo, Parra, Alonso and Velasco (2014)]

• If $|\alpha \partial_{\Theta} B_1|/|\partial_{\Theta} B_0| \sim 1$ or $|\alpha \partial_{\zeta} B_1|/|\partial_{\zeta} B_0| \sim 1$, then a simple Taylor expansion does not work.

We have solved the $1/\nu$ regime. Typical passing and trapped (both in large wells and ripple wells) particles are collisionless.

Iván Calvo, CIEMAT, Madrid

Perturbations with large gradients: $1/\nu$ regime

- The drift-kinetic equation must be solved in each of the regions numbered in the figure, and the solutions have to be matched.
- In contrast to the common perception, the neoclassical fluxes and therefore the neoclassical damping are not dominated by ripple wells.

Region II, particles trapped in large wells, dominate neoclassical transport for $\nu_{*i} \ll 1$

The key result is the determination of the scaling of the orbit-averaged radial magnetic drift, $\overline{v_{\psi,i}}$.

- The region of the orbit in a neighborhood of the bounce points is responsible for the result $\overline{v_{\psi,i}} \sim \alpha^{1/2} \rho_{*i} v_{ti} |\nabla \psi|$. Relatively technical calculation [Calvo *et al.* (2014)].
- The non-adiabatic piece of the distribution function in this region scales as $G_i^{\rm II} \sim \alpha^{1/2} \nu_{*i}^{-1} \rho_{*i} n_i v_{ti}^{-3}$, and large wells contribute to the damping as

$$\langle \mathbf{J}_n \cdot \nabla \psi \rangle_{\psi} \sim \frac{\alpha}{\nu_{*i}} \rho_{*i}^2 n_i v_{ti} |\nabla \psi|.$$

Region II, particles trapped in large wells, dominate neoclassical transport for $\nu_{*i} \ll 1$

The key result is the determination of the scaling of the orbit-averaged radial magnetic drift, $\overline{v_{\psi,i}}$.

- The region of the orbit in a neighborhood of the bounce points is responsible for the result $\overline{v_{\psi,i}} \sim \alpha^{1/2} \rho_{*i} v_{ti} |\nabla \psi|$. Relatively technical calculation [Calvo *et al.* (2014)].
- The non-adiabatic piece of the distribution function in this region scales as $G_i^{\rm II} \sim \alpha^{1/2} \nu_{*i}^{-1} \rho_{*i} n_i v_{ti}^{-3}$, and large wells contribute to the damping as

$$\langle \mathbf{J}_n \cdot \nabla \psi \rangle_{\psi} \sim \frac{\alpha}{\nu_{*i}} \rho_{*i}^2 n_i v_{ti} |\nabla \psi|.$$

The criterion for closeness to quasisymmetry is, in this case,

$$\alpha \ll \nu_{*i}\rho_{*i}.$$

• Compare with the less demanding criterion obtained for perturbations with small gradients, $\alpha \ll \sqrt{\nu_{*i}\rho_{*i}}$.

Part II: What is the size of the radial region in which the criterion for closeness to QS can be satisfied?

- We have to understand the relation between magnetohydrodynamic (MHD) equilibrium equations and the QS condition.
 - This is done in the basic reference [Garren and Boozer (1991)], relying on an expansion around the magnetic axis.

Part II: What is the size of the radial region in which the criterion for closeness to QS can be satisfied?

- We have to understand the relation between magnetohydrodynamic (MHD) equilibrium equations and the QS condition.
 - This is done in the basic reference [Garren and Boozer (1991)], relying on an expansion around the magnetic axis.

MHD EQUILIBRIUM AROUND A SURFACE \mathcal{S}_{r_0} FAR FROM THE MAGNETIC AXIS

- Data that are needed on S_{r0} to determine B around S_{r0}?
 Here, r := √ψ/B_{axis}, where B_{axis} is the average of B on axis.
- We have developed a method (not explained in detail here) to compute local MHD equilibria in arbitrary flux coordinates $\{r, u, v\}$, where u and v are poloidal and toroidal angles.
 - In [Hegna (2000)], the problem is addressed in Boozer coordinates.

Local stellarator MHD equilibria

If $\mathbf{B} \cdot \nabla r = 0$ and $(\nabla \times \mathbf{B}) \cdot \nabla r = 0$, then

$$\mathbf{B} = I_t(r)\nabla_{\mathcal{S}_r} u + I_p(r)\nabla_{\mathcal{S}_r} v + \nabla_{\mathcal{S}_r} \chi$$

where ∇_{S_r} denotes the projection of the gradient on S_r . The potential $\chi(r, u, v)$ depends on the choice of coordinates.

If $\mathbf{B} \cdot \nabla r = 0$ and $(\nabla \times \mathbf{B}) \cdot \nabla r = 0$, then

$$\mathbf{B} = I_t(r) \nabla_{\mathcal{S}_r} u + I_p(r) \nabla_{\mathcal{S}_r} v + \nabla_{\mathcal{S}_r} \chi$$

where ∇_{S_r} denotes the projection of the gradient on S_r . The potential $\chi(r, u, v)$ depends on the choice of coordinates.

Using $\nabla \cdot \mathbf{B} = 0$ and the MHD equilibrium equations, one can prove that

- Knowledge of $\mathbf{x}(r_0, u, v)$ (i.e. the shape of S_{r_0}) and two numbers (say, $I_t(r_0)$ and $I_p(r_0)$) determines \mathbf{B} on S_{r_0} .
- Knowledge of $\mathbf{x}(r_0, u, v)$ and two flux functions (say, $I_t(r)$ and $I_p(r)$) determines \mathbf{B} on $\mathcal{S}_{r_0+\delta r}$ and, by integration, in the whole stellarator.
- Note that, out of the three functions of u and v within $\mathbf{x}(r_0, u, v)$, two of them correspond to reparameterizations on S_{r_0} . The real freedom amounts to only one function of u and v.

Exact QS on S_{r_0} is possible

Coordinate-free QS condition. A stellarator is QS if and only if

$$(\mathbf{B} \times \nabla r) \cdot \nabla B = F(r)\mathbf{B} \cdot \nabla B$$

for some flux function F(r).

Geometrically, a stellarator is QS if there exists F(r) such that the vector field $\mathbf{V}_F := \mathbf{B} \times \nabla r - F(r)\mathbf{B}$ has closed integral curves and such that B is constant along them; i.e.

 $\mathbf{V}_F \cdot \nabla B = 0.$

Exact QS on S_{r_0} is possible

Coordinate-free QS condition. A stellarator is QS if and only if

$$(\mathbf{B} \times \nabla r) \cdot \nabla B = F(r)\mathbf{B} \cdot \nabla B$$

for some flux function F(r).

Geometrically, a stellarator is QS if there exists F(r) such that the vector field $\mathbf{V}_F := \mathbf{B} \times \nabla r - F(r)\mathbf{B}$ has closed integral curves and such that B is constant along them; i.e.

$$\mathbf{V}_F \cdot \nabla B = 0.$$

Express the QS condition in terms of $\mathbf{x}(r_0, u, v)$ by employing that

$$B^{2} = \frac{(I_{t} + \partial_{u}\chi)^{2}|\partial_{v}\mathbf{x}|^{2}}{|\partial_{u}\mathbf{x} \times \partial_{v}\mathbf{x}|^{2}} + \frac{(I_{p} + \partial_{v}\chi)^{2}|\partial_{u}\mathbf{x}|^{2}}{|\partial_{u}\mathbf{x} \times \partial_{v}\mathbf{x}|^{2}} - 2(I_{t} + \partial_{u}\chi)(I_{p} + \partial_{v}\chi)\frac{\partial_{u}\mathbf{x} \cdot \partial_{v}\mathbf{x}}{|\partial_{u}\mathbf{x} \times \partial_{v}\mathbf{x}|^{2}},$$

etc.

The QS condition provides an additional equation that fixes the function of u and v that remained free after imposing MHD equilibrium.

Iván Calvo, CIEMAT, Madrid

Quasisymmetry far from the magnetic axis

Deviation from quasisymmetry around \mathcal{S}_{r_0}

- Since we have no more freedom after making S_{r0} exactly QS, B around S_{r0} is found from the local equilibrium relations.
- Schematically,

$$\mathbf{x}(r_0 + \delta r, u, v) = \mathbf{x}(r_0, u, v) + \partial_r \mathbf{x}(r_0, u, v) \delta r + \dots$$

Deviation from quasisymmetry around \mathcal{S}_{r_0}

Since we have no more freedom after making S_{r0} exactly QS, B around S_{r0} is found from the local equilibrium relations.
Schematically,

$$\mathbf{x}(r_0 + \delta r, u, v) = \mathbf{x}(r_0, u, v) + \partial_r \mathbf{x}(r_0, u, v) \delta r + \dots$$

Typically, within a radial distance δr from S_{r0}, deviations from QS of size

$$\alpha \sim \delta r/a$$

are generated. Here, a is the minor radius. Recalling the most favorable criterion for closeness to QS (small gradients and $\nu_* \sim 1$),

$$\alpha \ll \rho_{*i}^{1/2},$$

we estimate that the stellarator can be QS in practice in a region

$$\delta r/a \ll \rho_{*i}^{1/2}.$$

This looks like a quite negative result...

Iván Calvo, CIEMAT, Madrid

This negative result seems to be consistent when we look at the configuration of relatively compact stellarators

• QPS has an aspect ratio $\epsilon^{-1} := R_0/a \approx 2.7$.

Here, $\tilde{\alpha} := \alpha/\epsilon(r)$ is the suitable quantity to measure deviations from QS when $\epsilon(r) := r/R_0 \ll 1$.

But things work better for large aspect ratio stellarators

It is possible to achieve $\tilde{\alpha} \ll 1$ in a considerable radial region.

NCSX,
$$\epsilon^{-1} := R_0/a \approx 4.6$$
.
HSX, $\epsilon^{-1} := R_0/a \approx 10$.

We understand this only partially.

- Starting with an exactly QS magnetic axis, [Garren and Boozer (1991)] proved that $\epsilon(r) \ll 1$ allowed QS in its neighborhood to high accuracy.
- Our objective was to make a generic surface S_{r_0} exactly QS, and estimate deviations from QS around it.
- For $\epsilon \sim 1$, we understand the problem. For $\epsilon \ll 1$, work to be done.

Thank you for your attention!

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.