Profile Evolution and Momentum Transport in the Core and Pedestal Peter J. Catto MIT Plasma Science and Fusion Center Special thanks to Felix Parra, Michael Barnes, Jungpyo Lee EFTC Lisbon 5-8 October 2015

Profile Evolution and Momentum Transport in the Core and Pedestal Peter J. Catto

MIT Plasma Science and Fusion Center

Special thanks to Felix Parra, Michael Barnes, Jungpyo Lee EFTC Lisbon 5-8 October 2015

Questions

> Why do we have to be careful evaluating core momentum transport and evolving profiles?

- Can we evaluate core intrinsic rotation?
- > What changes in the pedestal?

Perspective

- Decidedly neoclassical: "legendary figures" of plasma theory did not try to directly evaluate collisional momentum transport
- > To evolve ion flow \vec{V} need to find $\vec{E} = -\nabla \Phi$ by evaluating momentum transport since $\vec{V} = cB^{-1}\vec{b} \times [\nabla \Phi + (Zen)^{-1}\nabla p] + V_{\parallel}\vec{b}$

Flux function portion of Φ harder to evaluate than n & T. $V_{\rm I\!I}$ is evaluated kinetically

Tricks of "legends" work with turbulence!

Motivation: Intrinsic rotation

- Rotation beneficial for MHD and turbulence
- Intrinsic rotation = momentum redistribution with little or no momentum input
- Mostly intrinsic rotation in ITER & reactors
- Intrinsic rotation results in diverse behavior

To explain the different behaviors we need to understand momentum transport and profile evolution

 \downarrow

Difficult: a small error in ambipolarity leads to an unphysical torque! ↓ Errors:

Analytic: gyrokinetic equation is not exact

• Numerical: due to noise and/or algorithms

Axisymmetric geometry

$$\begin{split} & \not{B} = I(\psi)\nabla\zeta + \nabla\zeta \times \nabla\psi , \ \nabla\zeta \text{ co-current direction} \\ & \not{V} \text{ Unperturbed ion flow } \vec{V} = \Omega_{\zeta}R^{2}\nabla\zeta + U(\psi)\vec{B} \\ & U \propto \partial T_{i}/\partial\psi \text{ \& if sonic } \Omega_{\zeta} \Rightarrow -c\partial\Phi/\partial\psi \end{split}$$

Angular momentum cons. determines E_{radial}

$$\left\langle \frac{\mathbf{RB}_{p}}{\mathbf{c}} \mathbf{J}_{r} \right\rangle - \frac{\partial}{\partial t} \left\langle \mathbf{MnRV}_{\zeta} \right\rangle = \left\langle \nabla \cdot \left(\mathbf{R}^{2} \vec{\pi} \cdot \nabla \zeta \right) \right\rangle \Longrightarrow \frac{1}{r} \frac{\partial}{\partial r} \left(r \mathbf{R} \pi_{r\zeta} \right)$$

 $\pi_{r\zeta} = \pi_{\zeta r}$ off diagonal stress tensor $\langle ... \rangle =$ flux surface average

> Ambipolarity error $\langle RB_p J_r \rangle \neq 0 \Rightarrow$ a torque!

Scale separation

 $\begin{array}{l} \blacktriangleright \mbox{ Turbulence} \Rightarrow \mbox{ eddy size} = \Delta << a = \mbox{ global size} \\ f = F + \delta f \mbox{ with } \delta f \sim Fe \delta \Phi / T \\ \nabla F \sim F/a \sim \delta f / \Delta \sim \nabla \delta f \\ \mbox{ Evolution: } \partial F / \partial t \sim D_{turb} F / a^2 \\ \delta F \sim F \rho_p / a \mbox{ in } F = f_{Max} + \delta F \\ \rho_p = \rho B / B_p \end{array} \end{tabular}$

Scale separation

 \blacktriangleright Turbulence \Rightarrow eddy size = $\Delta \ll a = global size$

$$\begin{split} f &= F + \delta f \text{ with } \delta f \sim Fe \delta \Phi / T \\ \nabla F &\sim F/a \sim \delta f / \Delta \sim \nabla \delta f \\ \text{Evolution: } \partial F / \partial t \sim D_{turb} F / a^2 \\ \delta F &\sim F \rho_p / a \quad \text{in } F = f_{Max} + \delta F \\ \rho_p &= \rho B / B_p \end{split}$$

radius

> Anisotropic fluctuations along & across \vec{B} $\nabla_{\parallel}\delta f \sim \delta f/qR$ qR = connection length with $B_p/B \sim a/qR << 1$

Many eddy turn over times to cross core

(critical balance \Rightarrow Barnes, Parra & Schekochikin PRL 2011)

> Nonlinear $\delta \vec{E} \times \vec{B} \sim \text{gradient drive}$ $\delta \vec{V}_E \cdot \nabla_\perp \delta f \sim \delta \vec{V}_E \cdot \nabla F \implies \delta f/F \sim e \delta \Phi/T \sim \Delta/a$

(critical balance \Rightarrow Barnes, Parra & Schekochikin PRL 2011)

Nonlinear \$\delta \vec{E} \times \vec{B} \sigma \vec{gradient} drive \$\delta \vec{V}_E \cdot \nabla_L \delta f \sigma \delta \vec{V}_E \cdot \nabla F \Rightarrow \$\delta f \vec{V}_E \cdot \nabla f \Rightarrow \$\delta f \vec{V}_E \cdot \nabla f \vec{V}_E \sigma \delta f \vec{V}_E \sigma \vec{V}_E \vec{V}_L \delta f \vec{V}_E \vec{V}_L \vec{V}_E \vec{V}_L \vec{V}_E \vec{V}_L \vec{V}_E \vec{V}_L \vec{V}_L \vec{V}_E \vec{V}_L \vec{V}_L

(critical balance \Rightarrow Barnes, Parra & Schekochikin PRL 2011)

Nonlinear \$\delta \vec{E} \times \vec{B} \sigma \vec{gradient} drive \$\delta \vec{V}_E \cdot \nabla_L \delta f \sigma \delta \vec{V}_E \cdot \nabla F \Rightarrow \delta f \lefta \delta \vec{V}_E \cdot \nabla f \Rightarrow \delta f \vec{V}_E \sigma \delta f \vec{V}_E \sigma \vec{V}_E \vec{V}_L \delta f \rightarrow \delta f \vec{V}_E \sigma \rightarrow \vec{V}_E \vec{V}_L \delta f \rightarrow \Delta \vec{V}_E \vec{V}_E \vec{V}_E \vec{V}_L \delta f \rightarrow \Delta \vec{V}_E \vec{V}_E \vec{V}_E \vec{V}_E \vec{V}_L \delta f \vec{V}_E \vec{V}_L \vec{V}_E \vec{V}_L \vec{V}_E \vec{V}_E \vec{V}_E \vec{V}_E \vec{V}_L \vec{V}_E \vec

 $\begin{aligned} & \blacktriangleright \text{Eddy turnover time} = \tau \text{ with } v_i = (2T/M)^{1/2} \\ & v_{\parallel} \nabla_{\parallel} \delta f \sim \delta f / \tau \quad \Rightarrow \quad \tau \sim q R / v_i \sim 1 / \omega_* \end{aligned}$

(critical balance \Rightarrow Barnes, Parra & Schekochikin PRL 2011)

- $\begin{aligned} & \blacktriangleright \text{Eddy turnover time} = \tau \text{ with } v_i = (2T/M)^{1/2} \\ & v_{\parallel} \nabla_{\parallel} \delta f \sim \delta f / \tau \quad \Rightarrow \quad \tau \sim q R / v_i \sim 1 / \omega_* \end{aligned}$
- $\begin{array}{l} \blacktriangleright \text{ Turbulent diffusivity} = D_{turb} \sim \Delta^2 / \tau \\ D_{turb} \sim \rho_p^2 v_i / qR \sim (qR/a) D_{gB} >> D_{plateau} > D_{banana} \\ \text{ (consistent with Table 4 of Parra & Barnes PPCF 2015)} \end{array}$

Ambipolarity error due to $\langle \nabla \cdot \vec{J} \rangle \neq 0$ > To avoid ambipolarity error from $\langle RB_p J_r \rangle \neq 0$ $\partial \pi_{r\zeta} / \partial r >> c^{-1}B_p J_r^{error} \Rightarrow J_r^{error} / env_i << \pi_{r\zeta} \rho_p / nTa$ Ambipolarity error due to $\langle \nabla \cdot \vec{J} \rangle \neq 0$ > To avoid ambipolarity error from $\langle RB_p J_r \rangle \neq 0$ $\partial \pi_{r\zeta} / \partial r >> c^{-1}B_p J_r^{error} \Rightarrow J_r^{error} / env_i << \pi_{r\zeta} \rho_p / nTa$ > Assume momentum diffuses: $\pi_{r\zeta} \sim D_{turb} \nabla (Mn\vec{V})$ $D_{turb} \sim \rho_p^2 v_i / qR$ & diamagnetic flow $\vec{V} \sim \rho_n v_i / a$

Ambipolarity error due to $\langle \nabla \cdot \vec{J} \rangle \neq 0$ \succ To avoid ambipolarity error from $\langle RB_p J_r \rangle \neq 0$ $\partial \pi_{r\xi} / \partial r >> c^{-1} B_p J_r^{error} \Rightarrow J_r^{error} / env_i << \pi_{r\xi} \rho_p / nTa$ > Assume momentum diffuses: $\pi_{rc} \sim D_{turb} \nabla (MnV)$ $D_{turb} \sim \rho_p^2 v_i / qR$ & diamagnetic flow $\vec{V} \sim \rho_p v_i / a$ Size of off diagonal stress: $\pi_{r\xi}/nT \sim (\rho_p/a)^2 (\rho/a)$

Ambipolarity error due to $\langle \nabla \cdot \vec{J} \rangle \neq 0$ \succ To avoid ambipolarity error from $\langle RB_p J_r \rangle \neq 0$ $\partial \pi_{r\xi} / \partial r >> c^{-1} B_p J_r^{error} \Rightarrow J_r^{error} / env_i << \pi_{r\xi} \rho_p / nTa$ > Assume momentum diffuses: $\pi_{rc} \sim D_{turb} \nabla (Mn \vec{V})$ $D_{turb} \sim \rho_p^2 v_i / qR$ & diamagnetic flow $\vec{V} \sim \rho_p v_i / a$ Size of off diagonal stress: $\pi_{rc}/nT \sim (\rho_p/a)^2 (\rho/a)$ > Error allowed: $J_r^{error}/env_i < <(\rho_p/a)^3(\rho/a)$ > Unphysical torque if $J_r^{error}/env_i \sim (\rho_p/a)^3 (\rho/a)$

Ambipolarity error due to $\langle \nabla \cdot \vec{J} \rangle \neq 0$ \succ To avoid ambipolarity error from $\langle RB_p J_r \rangle \neq 0$ $\partial \pi_{r\xi} / \partial r >> c^{-1} B_p J_r^{error} \Rightarrow J_r^{error} / env_i << \pi_{r\xi} \rho_p / nTa$ > Assume momentum diffuses: $\pi_{rc} \sim D_{turb} \nabla (Mn \vec{V})$ $D_{turb} \sim \rho_p^2 v_i / qR$ & diamagnetic flow $\vec{V} \sim \rho_p v_i / a$ Size of off diagonal stress: $\pi_{r\xi}/nT \sim (\rho_p/a)^2 (\rho/a)$ > Error allowed: $J_r^{error}/env_i < <(\rho_p/a)^3(\rho/a)$ > Unphysical torque if $J_r^{error}/env_i \sim (\rho_p/a)^3 (\rho/a)$ > Direct evaluation: $\pi_{rc}/nT \sim (\rho_{p}/a)^{2}(\rho/a) \sim \delta f/f_{Max}$

Standard gyrokinetic equation: $\vec{R} = \vec{r} + \Omega^{-1}\vec{v} \times \vec{b}$

> In $E=v^2/2+Ze\Phi/M$, $\mu = v_{\perp}^2/2B$ velocity variables, lowest order gyrokinetic eq. for $f = F + \delta f$

 $\frac{\partial f}{\partial t} + \frac{d\dot{R}}{dt} \cdot \left[\nabla_{R}f - \frac{Ze}{M}\nabla_{R}\langle\Phi\rangle_{R}\frac{\partial f}{\partial E}\right] = \langle C\{f\}\rangle_{R}$ $\frac{d\ddot{R}}{dt} = v_{\parallel}\vec{b} - \frac{c}{B}\nabla_{R}\langle\Phi\rangle_{R} \times \vec{b} + \vec{v}_{Magnetic}$ $\langle ... \rangle_{R} = \text{gyrophase average at fixed } \vec{R}, \& \vec{b} = \vec{B}/B$

> $\delta f/F \sim \rho/a$ & retains $k_{\perp}\rho \sim 1: (\rho_p/a)^2$ missing!

OK for heat and particle fluxes using moments

Intrinsic ambipolarity

- > Intrinsic ambipolarity means $\langle \nabla \cdot \vec{J} \rangle = 0$ or $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ independent of radial $\vec{E} = -\nabla \Phi$
- > Stellarators are <u>not</u> intrinsically ambipolar unless they are quasi-symmetric (omnigeneity is not enough) so $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ gives $\partial \Phi / \partial \psi$

Intrinsic ambipolarity

- > Intrinsic ambipolarity means $\langle \nabla \cdot \vec{J} \rangle = 0$ or $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ independent of radial $\vec{E} = -\nabla \Phi$
- > Stellarators are <u>not</u> intrinsically ambipolar unless they are quasi-symmetric (omnigeneity is not enough) so $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ gives $\partial \Phi / \partial \psi$
- ► Tokamaks intrinsically ambipolar to order $\delta f/F \sim (\rho/a)^2 \Rightarrow$ next order GKE not enough for a direct evaluation of $\pi_{r\zeta}$ (see Parra & Catto PPCF 2009 and Sugama *et al.* PPCF 2011)

ugh!

Intrinsic ambipolarity

- > Intrinsic ambipolarity means $\langle \nabla \cdot \vec{J} \rangle = 0$ or $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ independent of radial $\vec{E} = -\nabla \Phi$
- > Stellarators are <u>not</u> intrinsically ambipolar unless they are quasi-symmetric (omnigeneity is not enough) so $\langle \vec{J} \cdot \nabla \psi \rangle = 0$ gives $\partial \Phi / \partial \psi$
- ► Tokamaks intrinsically ambipolar to order $\delta f/F \sim (\rho/a)^2 \Rightarrow$ next order GKE not enough for a direct evaluation of $\pi_{r\zeta}$ (see Parra & Catto PPCF 2009 and Sugama *et al.* PPCF 2011)
- Seems hopeless!

But there is an implementable method to evaluate core intrinsic rotation and it works! $\downarrow \downarrow$ Moment approach: origin $\Omega \vec{v} \times \vec{b} \cdot \nabla_v f \gg \frac{\partial f}{\partial t}, v_{\parallel} \vec{b} \cdot \nabla f, C\{f\}$ $(\Omega \gg \omega_*, v_i/qR, v)$

Moment approach to the rescue!

- > Only requires $\delta f/f_{Max} \sim (\rho_p/a)(\rho/a)$
- > Moment approach: use velocity moments of FP for $\rho_p \ll a$ to evaluate tor. ang. mom. flux

$$\Pi = M \langle R^2 \int d^3 v f \nabla \zeta \cdot \vec{v} \vec{v} \cdot \nabla \psi \rangle_T \approx R^2 B_p \pi_{r\zeta} \text{ in}$$
$$\frac{\partial}{\partial t} \langle MnR^2 \vec{V} \cdot \nabla \zeta \rangle_T + \frac{1}{V'} \frac{\partial}{\partial \psi} (V'\Pi) = \text{applied torque}$$

$$\langle ... \rangle_{\mathrm{T}} = (\Delta t \Delta \psi)^{-1} \int_{\Delta t} \mathrm{d} t \int_{\Delta \psi} \mathrm{d} \psi \langle ... \rangle \quad \text{with} \\ \langle ... \rangle = (\mathrm{V}')^{-1} \oint \mathrm{d} \vartheta \mathrm{d} \zeta (...) / \vec{\mathrm{B}} \cdot \nabla \vartheta \quad \& \ \mathrm{V}' = \oint \mathrm{d} \vartheta \mathrm{d} \zeta / \vec{\mathrm{B}} \cdot \nabla \vartheta$$

Direct moment approach: particle flux example Complex so illustrate using particle transport $\frac{\partial n}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial \psi} (V' \langle n \vec{V} \cdot \nabla \psi \rangle_T) = 0$

Direct $\langle n\vec{V}\cdot\nabla\psi\rangle_T$ evaluation requires: $\langle\delta n\delta\vec{V}\rangle_T\cdot\nabla\psi\sim(n\rho_p/a)(v_i\rho/a)RB_p,$ $\langle\delta n\rangle_T\vec{V}\cdot\nabla\psi \text{ and } n\langle\delta\vec{V}\rangle_T\cdot\nabla\psi$ $\langle\delta n\rangle_T\cdot\nabla\psi$ $\langle\delta n\rangle_T\cdot\nabla\psi$

Direct moment approach: particle flux example Complex so illustrate using particle transport $\frac{\partial \mathbf{n}}{\partial t} + \frac{1}{\mathbf{V}'} \frac{\partial}{\partial \psi} (\mathbf{V}' \langle \mathbf{n} \vec{\mathbf{V}} \cdot \nabla \psi \rangle_{\mathrm{T}}) = 0$ \succ Direct $\langle n\vec{V}\cdot\nabla\psi\rangle_{T}$ evaluation requires: $\langle \delta n \delta \vec{V} \rangle_{T} \cdot \nabla \psi \sim (n \rho_{p}/a) (v_{i} \rho/a) RB_{p}$ $\langle \delta n \rangle_{T} \vec{V} \cdot \nabla \psi$ and $n \langle \delta \vec{V} \rangle_{T} \cdot \nabla \psi$ $\succ \langle \delta n \rangle_T \& \langle \delta \vec{V} \rangle_T$ only vanish to lowest order $\blacktriangleright \vec{V} \cdot \nabla \psi = 0 \& \vec{V} \sim v_i \rho_p / a \Rightarrow do not need \langle \delta n \rangle_T$

 \blacktriangleright Standard GKs doesn't give $\delta \vec{V}$ to order $v_i \rho \rho_p/a^2$

Direct moment approach: particle flux example Complex so illustrate using particle transport $\frac{\partial \mathbf{n}}{\partial t} + \frac{1}{\mathbf{V}'} \frac{\partial}{\partial \psi} (\mathbf{V}' \langle \mathbf{n} \vec{\mathbf{V}} \cdot \nabla \psi \rangle_{\mathrm{T}}) = 0$ \succ Direct $\langle n\vec{V}\cdot\nabla\psi\rangle_{T}$ evaluation requires: $\langle \delta n \delta \vec{V} \rangle_T \cdot \nabla \psi \sim (n \rho_p / a) (v_i \rho / a) RB_p$, $\langle \delta n \rangle_{_{\mathrm{T}}} \vec{V} \cdot \nabla \psi$ and $n \langle \delta \vec{V} \rangle_{_{\mathrm{T}}} \cdot \nabla \psi$ $\succ \langle \delta n \rangle_T \& \langle \delta \vec{V} \rangle_T$ only vanish to lowest order $\succ \vec{V} \cdot \nabla \psi = 0 \& \vec{V} \sim v_i \rho_p / a \Rightarrow do not need \langle \delta n \rangle_T$ Standard GKs doesn't give $\delta \vec{V}$ to order $v_i \rho \rho_p / a^2$

 \succ Gain an order in ρ_p/a using a moment of FP eq.

Indirect moment approach: particle flux

 $\searrow \text{Momentum conservation gives } \langle n\vec{V} \cdot \nabla\psi \rangle_{T} = \\ \langle \frac{\nabla\psi \times \vec{b}}{\Omega} \cdot [\frac{\partial}{\partial t}(n\vec{V}) + \nabla \cdot (\int d^{3}v f \vec{v} \vec{v}) + \frac{Zen}{M} \nabla \Phi - \int d^{3}v \vec{v} C] \rangle_{T}$

Indirect moment approach: particle flux

 $\searrow \text{Momentum conservation gives } \langle n\vec{V} \cdot \nabla\psi \rangle_{T} = \\ \langle \frac{\nabla\psi \times \vec{b}}{\Omega} \cdot [\frac{\partial}{\partial t}(n\vec{V}) + \nabla \cdot (\int d^{3}v f \vec{v} \vec{v}) + \frac{Zen}{M} \nabla \Phi - \int d^{3}v \vec{v}C] \rangle_{T}$

✓ Using ∇ψ× b = R²B∇ζ – Ib then parallel mom. (turbulent) + (class. + neo. cl. collisional) (nV·∇ψ)_T=c(n∂Φ/∂ζ)_T-(Mc/Ze)(R²∫d³vv·∇ζC])_T Remaining terms small by ρ_p/a or less, and R⁻¹B⁻¹_p(cn∂Φ/∂ζ)_T ⇒ (δnδV_E)_T~D_{turb}n/a

Indirect moment approach: particle flux

 $\searrow \text{Momentum conservation gives } \langle n\vec{V} \cdot \nabla\psi \rangle_{T} = \\ \langle \frac{\nabla\psi \times \vec{b}}{\Omega} \cdot [\frac{\partial}{\partial t}(n\vec{V}) + \nabla \cdot (\int d^{3}v f \vec{v} \vec{v}) + \frac{Zen}{M} \nabla \Phi - \int d^{3}v \vec{v}C] \rangle_{T}$

➤ Using \(\nabla\psi \times \vec{b}\) = \(\mathbf{R}^2 \mathbf{B} \nabla\zeta - I\vec{b}\) then parallel mom. (turbulent) + (class. + neo. cl. collisional) \(\nabla\vec{v}\nabla\psi_T = c\langle n\delta \Delta\zeta \rangle_T - (Mc/Ze)\langle \mathbf{R}^2\int_d^3 v \vec{v} \cdot \nabla\zeta \vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \Delta \zeta \rangle_T - (Mc/Ze)\langle \mathbf{R}^2\int_d^3 v \vec{v} \cdot \nabla\zeta \vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \Delta \zeta \rangle_T - (Mc/Ze)\langle \mathbf{R}^2\int_d^3 v \vec{v} \cdot \nabla\zeta \vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \Delta \zeta \zeta \rangle_T - (Mc/Ze)\langle \mathbf{R}^2\int_d^3 v \vec{v} \cdot \nabla\zeta \vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \Delta \zeta \zeta \zeta \vec{A}\delta \vec{V}\vec{C}\vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \Delta \zeta \zeta \zeta \vec{A}\delta \vec{V}\vec{C}\vec{C}\rangle_T \(\mathbf{R} = c\langle n\delta \vec{A}\vec{C}\vec{C}\vec{C}\vec{A}\vec{C

Moment approach: heat & momentum fluxes

► To evaluate ion heat transport need $\langle \int d^3 v f v^2 \vec{v} \cdot \nabla \psi \rangle_T$ and $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ Evaluate $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ as for particle flux Use $\vec{v} v^2$ FP moment

Starts getting complicated!

Moment approach: heat & momentum fluxes

► To evaluate ion heat transport need $\langle \int d^3 v f v^2 \vec{v} \cdot \nabla \psi \rangle_T$ and $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ Evaluate $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ as for particle flux Use $\vec{v} v^2$ FP moment

Starts getting complicated!

 \succ For momentum transport need $\vec{v}\vec{v}\vec{v}$ moments

(Parra & Catto PPCF 2010, Parra et al. NF 2012, Parra & Barnes PPCF 2015)

Moment approach: heat & momentum fluxes

► To evaluate ion heat transport need $\langle \int d^3 v f v^2 \vec{v} \cdot \nabla \psi \rangle_T$ and $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ Evaluate $\langle n \vec{V} \cdot \nabla \Phi \rangle_T$ as for particle flux Use $\vec{v} v^2$ FP moment

Starts getting complicated!

 For momentum transport need vvv moments
 (Parra & Catto PPCF 2010, Parra et al. NF 2012, Parra & Barnes PPCF 2015)
 Π ≡ M⟨R²∫d³vf∇ζ·vv·∇ψ⟩_T ⇒ many terms! turbulent, neoclassical, & finite orbit width + combinations; radial derivative + slow poloidal fluctuation variations; up-down asymmetry;...
 Momentum transport needs nonlocal features

Next order gyrokinetic equation not enough!

- ► Cannot solve ρ_p/a corrected GKE to evolve profiles directly: need $\delta f/f_{Max} \sim (\rho_p/a)^2 (\rho/a)$ and it only gives $\delta f/f_{Max} \sim (\rho_p/a)(\rho/a)$
- $\label{eq:coupling} \succ Coupling ρ_p/a corrected GKE to a fluid code evolving n, T and Φ picks up another power of ρ_p/a with moment approach for Π Π $$

Hybrid gyrokinetic + fluid & multi-scale ($\Delta \ll a$)

- GS2 with higher order GKE plus Trinity with conservation eqs. treats momentum transport and evolves profiles
- Turbulent GS2 fluctuations on fine space-time grid embedded in coarse TRINITY "fluid" grid

*Barnes et al., Phys. Plasmas (2010)

Toroidal angular momentum conservation

$$\frac{1}{r}\frac{\partial}{\partial r}(rR\pi_{r\zeta}) = 0$$

Steady state with no applied torque: $\pi_{r\zeta}(r=0)$ $\pi_{r\zeta}(r) = 0$

- Find Ω_{ζ} or $\langle \Phi(r) \rangle$ by solving $\pi_{r\zeta}(r) = 0$
- Limits: high flow-sonic & low flow-diamagnetic
- ITER diamagnetic, but sonic limit of some interest: no intrinsic or residual stress

Strong rotation or sonic limit

- $\geq \text{Expand } \pi_{r\xi}(\Omega_{\xi},\partial\Omega_{\xi}/\partial r) \text{ for small } \Omega_{\xi} \& \partial\Omega_{\xi}/\partial r: \\ \pi_{r\xi}/MnR = -P\Omega_{\xi} D\partial\Omega_{\xi}/\partial r$
- > "Intrinsic" rotation means no source \Rightarrow pinch P + diffusion D depend on n, T, $\partial n/\partial r \& \partial T/\partial r$ $P\Omega_{\zeta} + D\partial \Omega_{\zeta}/\partial r = 0 \Rightarrow \Omega_{\zeta} = \Omega_{\zeta}(a) \exp(\int_{r}^{a} dr P/D)$
- No sign change! Red curve?
- Sign depends on edge
- ➢ Important symmetries ⇒
 symmetry breaking in Π_{int}

High flow symmetry properties

$$\begin{split} & \blacktriangleright \text{Up-down symmetric} \\ & \triangleright \text{ Changing signs of } \Omega_{\zeta}, \\ & \partial \Omega_{\zeta} / \partial \psi, \vartheta, v_{\parallel}, k_{\psi} \text{ changes} \\ & \sigma \delta_{\zeta} / \partial \psi, \vartheta, v_{\parallel}, k_{\psi} \text{ changes} \\ & \text{signs of } \delta f \text{ and } \delta \Phi \\ & \text{(see Parra, Barnes & Peeters 2011)} \\ & \searrow V \sim v_i \text{ easier by } \rho_p / a \end{split}$$

no ang. mom. change due to ions of opposite $v_{\mbox{\tiny II}}$

$$\blacktriangleright \Pi(\Omega_{\zeta}=0,\partial\Omega_{\zeta}/\partial\psi=0)=0$$

- \blacktriangleright Expanding gives $\Pi \propto -P\Omega_{\zeta} D\partial\Omega_{\zeta}/\partial r$
- > Sign change of $\Omega_{\zeta} \& \partial \Omega_{\zeta} / \partial \psi$ changes sign of Π

Up-down high flow symmetry

Radial angular momentum flux: integrand odd when

 $\partial \Omega_{\zeta} / \partial r \neq 0 = \Omega_{\zeta}$ Net integrand contribution to flux

Diamagnetic flow: up-down symmetric tokamak Symmetry: $\Pi = M \langle R^2 \delta \vec{V}_E \cdot \nabla \psi \int d^3 v \, \delta f \, \vec{v} \cdot \nabla \zeta \rangle_T \approx 0$ **Diamagnetic flow: up-down symmetric tokamak** Symmetry: $\Pi \equiv M \langle R^2 \delta \vec{V}_E \cdot \nabla \psi \int d^3 v \, \delta f \, \vec{v} \cdot \nabla \zeta \rangle_T \approx 0$

➢ Next order, phenomenological form popular π_{rξ}/MnR = -PΩ_ζ - D∂Ω_ζ/∂r + π_{int}/MnR, with Pa ~ D & intrinsic or residual stress = π_{int} π_{int}/MnR ~ (v_iρ_p)²ρ/a³R **Diamagnetic flow: up-down symmetric tokamak Symmetry:** $\Pi \equiv M \langle R^2 \delta \vec{V}_E \cdot \nabla \psi \int d^3 v \, \delta f \, \vec{v} \cdot \nabla \zeta \rangle_T \approx 0$

- ➢ Next order, phenomenological form popular π_{rξ}/MnR = -PΩ_ζ - D∂Ω_ζ/∂r + π_{int}/MnR, with Pa ~ D & intrinsic or residual stress = π_{int} π_{int}/MnR ~ (v_iρ_p)²ρ/a³R
- ✓ Use ∂Ω_ζ/∂r ~ Ω_ζ/a & recall D_{turb}~ ρ_p²v_i/qR
 For intrinsic rotation expect π_{rζ} = 0 to give
 RΩ_ζ ~ v_iρ_p/a

 $ightarrow \pi_{int}$ matters - essential when rotation changes sign ⇒ hollow profiles

Diamagnetic ion flow ordering: hollow profiles

Diamagnetic flow ordering

 $\label{eq:relation} \blacktriangleright \mbox{Recalling } \Omega_{\zeta} = \Omega_E + \Omega_d \mbox{, find } \Pi_{int} \Rightarrow \mbox{2 pinches} \\ \mbox{ and 2 diffusivitiies when } \vec{V} \sim \rho_p v_i / a \\ \end{tabular}$

$$\Pi = -Mn \langle R^2 \rangle [P_E \Omega_E + P_d \Omega_d + D_E \frac{\partial \Omega_E}{\partial r} + D_d \frac{\partial \Omega_d}{\partial r}] + \Pi'_{int}$$
$$\Pi'_{int} = remaining intrinsic or residual stress$$

Diamagnetic flow ordering

 $\begin{array}{l} \blacktriangleright \mbox{ Recall } \Omega_{\zeta} = \Omega_{E} + \Omega_{d} : \Pi_{int} \Rightarrow \mbox{ 2 pinches and 2} \\ \mbox{ diffusivitiies when } V \sim \rho_{p} v_{i} / a \end{array}$

$$\Pi = -Mn \langle R^2 \rangle [P_E \Omega_E + P_d \Omega_d + D_E \frac{\partial \Omega_E}{\partial r} + D_d \frac{\partial \Omega_d}{\partial r}] + \Pi'_{int}$$

 Π'_{int} = remaining intrinsic or residual stress

If $\Omega_d > 0$ at $\Omega_{\zeta} = 0 \& D_d = D_E$: Blue $\Rightarrow P_d > P_E \mod$. flux in = $Mn\langle R^2 \rangle (P_E - P_d) \Omega_d < 0 \Rightarrow peaked$

Parra et al., PRL (2012)

Diamagnetic flow ordering

 \blacktriangleright Recall $\Omega_{\zeta} = \Omega_{E} + \Omega_{d}$: $\Pi_{int} \Rightarrow 2$ pinches and 2 diffusivitiies when $V \thicksim \rho_{\rm p} v_{\rm i}/a$ $\Pi = -Mn \langle R^2 \rangle [P_E \Omega_E + P_d \Omega_d + D_E \frac{\partial \Omega_E}{\partial r} + D_d \frac{\partial \Omega_d}{\partial r}] + \Pi'_{int}$ If Π'_{int} = remaining intrinsic or residual stress $\rightarrow 0$ & $\Omega_d > 0$ at $\Omega_c = 0$ & $D_d = D_E$: ر⁴ [km/s] Blue \Rightarrow P_d > P_E mom. flux in = $Mn\langle R^2 \rangle (P_E - P_d)\Omega_d < 0 \Rightarrow peaked$ $Red \Rightarrow P_d < P_E$ mom. flux out = 3.2 3.4 3.6 3.8 $Mn\langle R^2 \rangle (P_E - P_d)\Omega_d > 0 \Rightarrow hollow$ *R* [m] Parra et al., PRL (2012) (based on Lee, Parra & Barnes 2014)

What changes in the pedestal?

 \downarrow

Pedestal changes

- Pedestal adjacent to SOL
- > B_p/B ~ a/qR with q >> 1
- ➢ Pedestal width ~ $\rho_p \Rightarrow \partial f / \partial r ~ f / \rho_p \Rightarrow$ can be non-Maxwellian
- > E×B and diamagnetic flow terms <u>each</u> sonic, but in opposite directions $cR\partial\Phi/\partial\psi \sim (cRT/Zen)\partial n/\partial\psi \sim v_i$
- > Unperturbed E×B and streaming compete $v_{\parallel} \sim cI B^{-1} \partial \Phi / \partial \psi \sim v_{i}$

 \blacktriangleright Strong poloidal variation of n, T & Φ possible

Pedestal width ~ ρ_p

➤ Core: transit average $v_{\parallel}\vec{b}\cdot\nabla F = C\{F\} \Rightarrow f_{Max}$

> In pedestal can derive the GKE using ψ_* $\psi_* = \psi + \Omega^{-1} \vec{v} \times \vec{b} \cdot \nabla \psi - Iv_{\parallel} / \Omega$

gyro $\Rightarrow \rho + \text{drift} \Rightarrow \rho_p$

Gyroaverages at fixed ψ_* (Kagan & Catto 2008) but $f(\psi_*, E) - f(\psi, E) \sim \rho_p \partial f / \partial r \sim f$

➢ Pedestal: finite orbit transit ave. @ fixed ψ_∗ $(v_{\parallel} + cIB^{-1}\partial \Phi/\partial \psi)\vec{b}\cdot\nabla F = C\{F\} \Rightarrow F = F(\psi, \vartheta, E, \mu)$

Strong poloidal variation

CX recombination spectroscopy on C-Mod observes poloidal variation of Φ & impurity n & T (Theiler *et al.* NF 2014 & Churchill *et al.* PoP 2015)

Stronger poloidal variation than B: must allow $\rho_p \sim a$ & sonic impurity flow, cannot neglect impurity diamagnetic drift, & impurity T not a flux function

(Theiler *et al*. NF 2014) **Poloidal variation of** E_r & diamagnetic term!

Strong poloidal variation with sonic flows Keep diamagnetic terms for ions & impurities $\frac{Z_{i}T_{z} \partial n_{z}}{Z_{z}n_{z} \partial \psi} \sim \frac{T_{i} \partial n_{i}}{n_{i} \partial \psi} \sim Z_{i}e \frac{\partial \Phi}{\partial \psi} \sim \frac{\partial T_{i}}{\partial \psi}$ E×B & dia. can't balance poloidally for both Flows vary poloidally from sonic to sub-sonic Alter pedestal model of Helander 1998 PoP: inertial = $M_z n_z V_z \cdot \nabla V_{z\parallel} = R_{z\parallel}$ = friction compress. heat. = $\frac{n_z}{T_z^{1/2}} \vec{V}_z \cdot \nabla(\frac{T_z^{3/2}}{n_z}) = Q_{zi}$ = equilib.

Need \vec{V}_z for poloidally varying n_z , T_z and Φ (Espinosa & Catto EPS 2015)

Summary

Practical way to handle core momentum transport & profile evolution

Pedestal presents new challenges

Related talk on up-down asymmetry today at 11am by J. Ball

Related experimental results in a Tuesday poster by F. Parra